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ABSTRACT
One of the goals of Natural Language Processing (NLP) is trans-
forming sentences to output relevant information in a given context.
For instance, relevant applications such as chatbots, translation sys-
tems, and sentiment analysis classifiers work that way. The advance
of NLP techniques made it possible to automate complex tasks, such
as converting text queries to tabular data queries, specifically SQL,
to return contextualized data. Since it is crucial in many areas to
interpret the data to obtain information and consider the particular-
ities of a text-to-SQL parser, we propose a SQL processing engine
whose internals are customized with natural language instructions.
DBVinci is our proposed processing model which is based on Ope-
nAI’s GPT-3.5 Text-davinci-003 engine that can perform language
tasks such as text-to-SQL, consistent instruction-following, and
supports inserting completions within text. Our framework is on
top of GPT-3.5 and decomposes complex SQL queries into a series
of simple processing steps, described in natural language. DBVinci
outperforms well-known text-to-SQL methods (e.g., RAT-SQL and
SQLOVA) reaching 89.7% of execution accuracy, considering Wik-
iSQL benchmark. We also obtain impressive performance with-
out the need of large scale annotated dataset for fine-tuning the
downstream task, by achieving 90% accuracy in zero-shot setting.
Therefore, we conclude that to obtain competitive results using
the Pre-trained Language Model (PLM), there is no need of the
“pre-training+fine-tuning” paradigm, besides that, when employ-
ing zero-shot in the proposed method, we can achieve promising
results.
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1 INTRODUCTION
Big data processing is an unavoidable way to produce business
efficiency and develop better products and services at companies.
For this reason, a huge number of data is now organized in relational
databases and accessed through Structured Query Language (SQL)
queries. The advance of Deep Learning facilitates database querying
through Natural Language Interfaces (NLI) even for casual users
[1].

NLI is a research area between Natural Language Processing
(NLP) and human-computer interaction that seeks to provide means
for humans to interact with computers through the use of natural
language [16]. Those systems not only offer an intuitive way to
explore complex datasets beyond keyword-search queries but also
contribute to data democratization, which allows users to easily
access data and to derive value, query explanations and query result
explanations from it [8].

In this context, text-to-SQL is a subarea of NLI in continuous
research given its relevance on automating the return process of
tabular data and easing the efforts of human users on learning and
writing SQL queries [2]. The purpose of text-to-SQL problem is
to convert natural language questions to SQL queries using com-
putational resources, more specifically, Artificial Inteligence (AI)
models.

To the best of our knowledge, CodexDB [10] was the first Pre-
trained Language Model (PLM) without fine-tuning to solve text-to-
SQL task. It is also called a SQL processing engine (SPE). Based on
Codex GPT-3, the model translates text into code whilst decompos-
ing complex SQL queries into a series of simple processing steps,
described in NL. Processing steps are enriched with user-provided
instructions and descriptions of database properties.
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Although there are previous methods that handle the text-to-
SQL tasks using pre-trained models, there still is space for advances
in this area. The OpenAI’s GPT model has been constantly im-
proved with new data and new configurations, for instance. The
new version employs the OpenAI’s GPT-3.5 which is a large neural
network, that can do any language task with a high quality, longer
output and consistent instruction-following, compared to its older
releases, and also supports inserting completions withing text.

Therefore, in this paper we present DBVinci, a method based on
state-of-art Pretrained Language Model architecture that is refined
to meet the needs of text-to-SQL task. In our scope, we imple-
ment Text-davinci-003 (DaVinci), which is part of the basis of the
OpenAI’s GPT-3.5 series of models and has 175 billion parameters,
making it a highly capable text generator. The power of DaVinci lies
in the high ability to understand instructions and generate text [14].
We can highlight our proposal does not need the fine-tuning step
implementation, despite of other related methods that employed
this step [5, 11].

Our main contributions are: a) to show high performance in zero-
shot setting without a large scale annotated dataset; b) reinforce
that large pre-trained language models can achieve competitive
performance on text-to-SQL parsing without “pre-processing+fine-
tuning” paradigm [7, 12]; c) Show that we achieve competitive
logical form accuracy and execution accuracy metrics comparing to
well-known text-to-SQL methods (e.g. Rat-SQL and SQLova) [5, 11].

This paper is organized as follows: Section 2 presents related
works; Section 3 presents the proposed method; Section 4 shows
the methodology; Section 5 presents results and discussion; Section
6 presents the conclusion of this research and future work.

2 RELATEDWORK
Previous papers inspired our work such as CodexDB [10] and has
very similar purpose to ours. The enabling technology for this sys-
tem is OpenAI’s GPT-3.0 Codex model, a large neural network that
translates natural language instructions into code. The developed
framework accepts queries together with natural language instruc-
tions as input. These instructions customize the way in which
queries are executed. CodexDB generates code to process queries
while complying with additional instructions and decomposes com-
plex SQL queries into sequences of simple processing steps and
they are formulated in NL using corresponding text templates.

Finally, automatically generated plan steps are interleaved with
user-provided instructions. The resulting text is enriched with in-
formation about the database schema and physical layout. The final
text is submitted to GPT-3 Codex, as known as prompt. Using this
approach as a starting point, CodexDB generates code for sample
queries in a training step.

Also, it is important to cite the implementation of Deep Learning
models for the task. The work of Wang et al. [11] presents unified
framework, called RAT-SQL for encoding relational structure in
the database schema and a given question. The model is based on
the self-attention mechanism, to address schema encoding, schema
linking, and feature representation within a text-to-SQL encoder.
They trained the method on Spider dataset [15] and WikiSQL. For
the first dataset, the model achieves an accuracy of 57.2% and for
the second dataset, the model achieves 78.8% of execution accuracy.

SQLOVA [5] is another Natural-language-to-SQL (NL2SQL)model
that achieves human performance in WikiSQL dataset. The authors
demonstrate the effectiveness of the architecture by proposing a
BERT-based table-aware encoder and a task-specific module on the
top of the encoder. The implemented method consists of two layers:
encoding layer that obtains table-aware word contextualization and
NL2SQL layer that generates the SQL query from the contextualized
representations. The model achieves 83.6% logical form accuracy
and 89.6% execution accuracy onWikiSQL test set. The authors also
explain that while BERT plays a significant role, merely attaching
a sequence-to-sequence model on the top of BERT leads to a poor
performance, indicating the importance of properly and carefully
utilizing BERT when dealing with structured data.

In terms of comparison, although the first approach (CodexDB)
is very similar to ours, the authors do not consider one of the main
metrics to evaluate results in Machine Language Models (MLM)
such as logical form accuracy. Instead, they use precision and accu-
racy and report results of experiments comparing different prompt
generation methods. Beyond that, Codex models are deprecated
and substituted for more proficient DaVinci engines, in terms of
robustness [13]. Also, hyperparameters such as temperature are
essential to deliver good operation of CodexDB prototype, which is
an unnecessary technique in our case, given robustness of DaVinci
engine. Notwithstanding, both researches (CodexDB and ours) em-
phasize the necessity of evaluating PLM models for data democ-
ratization, since common users are becoming more exposed to
relational databases.

Secondly, the reason we chose RAT-SQL and SQLOVA to com-
pare to our model is that both are well-known robust models to
solve the task and they corroborate the point that PLMs achieve as
competitive performance as those models without the pre-training
and fine-tuning phases, since we achieve higher results of execu-
tion accuracy comparing to both. The first model uses fine-tune
phase with Bidirectional Encoder Representation from Transform-
ers (BERT) to achieve higher results whereas SQLOVA approach
focus on fine-tuning BERT-based and table-aware encoding layer.

3 DBVINCI
In this section, we present the DBVinci text-to-SQL method. In
contrast to classical approaches, our method employs Pre-trained
Language Model. Figure 1 summarizes the steps that compose our
approach which are discussed in the next subsections.

Initially, both the natural language questions and the table struc-
ture with its columns are preprocessed (subsection 3.1) to merge
data and form a single input. After that, we create a prompt in
NL that is passed to DaVinci engine to create queries based on
the ones from benchmark and its respective table structure. We
perform post-processing (subsection 3.2) to clean the output noise
that is not part of the query. Furthermore, to compare results in
execution accuracy, we get the label query and predicted one and
execute against database. The results of this process are recorded
separately. For both logical form accuracy and execution accuracy,
we implemented a script to compare results for each query. Our ex-
periments evaluating DBVinci focus on the key step of translating
an NL query into SQL.
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3.1 Pre-processing
In this step, we mapped each table and column of the database
that were being used in the queries, to visualize the data manager
(DBMS with SQLite) in each table. After this step, the data and
related columns (named generically as 𝑐𝑜𝑙0, 𝑐𝑜𝑙1, 𝑐𝑜𝑙2, etc.) could be
visualized with the real name to compose the query. In the query,
we replaced the generic name of columns for real target ones to
execute correctly. This step is necessary because the raw queries in
WikiSQL are not comparable with execution accuracy metric.

3.2 Post-processing
Furthermore, we did the same procedure for the output results in
GPT-3.5 with the DaVinci engine. In this process, only the column
names were modified. GPT tables are numbered by ID, so it was
necessary to map them. In order to run the generated queries, a
data cleaning was performed to remove automatically generated
line breaks. To perform the calculations and obtain execution ac-
curacy metric, a query from the dataset was executed with the
corresponding columns and, after that, the results were saved in a
file. The same was done for the queries generated by the pre-trained
model. After this step, the files were compared to verify their equity,
shown in Table 1 and sorted in alphabetical order. Furthermore,
it was verified that all queries that returned empty in inferences
also returned empty in label queries and the semantics of the query
structure were the same in both cases. In order to obtain logical
form accuracy results, we cleaned the data by removing single and
double quotes, line breaks and all queries in padding to check the
string match of the metric.

4 METHODOLOGY
In this section, we describe the setup configuration, the evaluation
metrics, and the benchmark dataset for the experiments.

4.1 Setup
The experiments were executed onWindows 10 homewith 32 GB of
RAM, i7 Intel processor, 8 cores for CPU and two GPUs: Video GTX

NL QUESTION

in

TABLE SCHEMA

ORIGINAL QUERY

GENERATED QUERY

Pre-processor Entry-Prompt

Model Text-davinci-003

Post-processorout

inin

DB Execution System

Generated queries result

Original queries result

Compute resultsout

Execution Accuracy

Logical Form Accuracy

Figure 1: DBVinci prototype evaluation process. The high-
lighted blocks depict the core process of the model architec-
ture.

1660 Ti and an integrated Intel Graphics. DBVinci is implemented in
Python 3 and accesses OpenAI’s GPT-3.5 Text-davinci-003 engine
model via OpenAI’s Python API, available at their website1. The
experiments use the most recent version of DaVinci engine2 with
the maximum of 4,097 tokens and an estimated 175 billion parame-
ters. The experiments consider up to the first hundred queries as
OpenAI’s free service is limited for outputing all predicted queries.
The data on which queries are operated is stored in the CSV format.

This is a direct method of using GPT-3.5, making the comparison
interesting because, to the best of our knowledge, it is the first
experiment using Text-davinci-003 as engine to process queries and
evaluate both logical form accuracy and execution accuracy for text-
to-SQL task. Many reasons motive us to choose Text-davinci-003
engine, such as higher quality writing comparing to Text-da-vinci-
002, por example; the capability of handleling with more complex
instructions; and it also has better performance at longer-form
content generation.

Besides that, Codex and GPT-3 models were superseded by the
more powerful 3.5 released generation models. As gpt-3.5-turbo is
more optimized for chat we opted to evaluate DaVinci results for
the task. However, it is important to consider we have no evidence
that WikiSQL was used to train OpenAi’s models or not.

4.2 Evaluation Metrics
To evaluate the performance of our DBVinci method, we adopted
logical form accuracy and execution accuracy on the benchmark
since they are commonly applied to compare text-to-SQL models.
Also, we emphasize that one model can have logically equivalent
queries expressed by completely different strings, thus, we apply
execution accuracy metric that deals with the semantics of different
queries with samemeaning. Let the logical form accuracy be Acclf =
N𝑙 𝑓/N and let the execution accuracy be Accex = N𝑒𝑥/N , where N
is the total number of examples, N𝑙 𝑓 is the number of queries that
have an exact string match with the ground truth query [16], and
N𝑒𝑥 represents the number of queries that, when executed, produce
the correct outcome [4].

Another part of the research is the evaluation in zero-shot learn-
ing for the model in order to perform a self-question-answer in
text-to-SQL task. For the evaluation, the prompts are not part of the
WikiSQL training data to the model and they were based on possi-
ble business necessities. We verified that the model can generate
a well-desired result for it. This process was done for a maximum
of 100 NL queries and we evaluated accuracy for it as follows. We
divide the number of syntactically correct predicted queries by the
total number of queries predicted by the model for all predicted
queries.

4.3 Dataset
In our experiments we employedWikiSQL. This is one of the first
large-scale, multi-domain benchmarks that made it possible to train
and evaluate neural text-to-SQL systems. Wiki SQL was developed
by Zhong et al. [16]. The dataset has 80,654 hand-annotated exam-
ples of questions and SQL queries distributed across 24,241 tables

1https://platform.openai.com/docs/models/moderation
2https://platform.openai.com/docs/models/gpt-3-5
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from Wikipedia that is an order of magnitude larger than compara-
ble datasets. It is ideal to train models that convert SQL to a single
table, and also it provides train/dev/test splits such that each table
is only in one split. This requires models to generalize not only new
questions but also to new table schemas.

5 RESULTS AND DISCUSSION
The following experiments compare DBVinci to well-known base-
lines that translate NL queries to SQL. To perform the experiments,
it is required a text-to-SQL benchmark that features natural lan-
guage questions, along with corresponding queries. In our case the
WikiSQL. [6:59 PM] Luiz Alberto Queiroz Cordovil Junior

Table 1: DBVinci performance onWikiSQL compared to other
approaches. “LF Acc” = Logical Form Accuracy; “Ex. Acc” =
Execution Accuracy.

Model Acclf (%) Accex (%)

Coarse2Fine [3] 71.7 78.5
DBVinci (ours) 62.0 89.7
HybridNet [6] 83.8 89.2
IncSQL [9] 49.9 83.7
RAT-SQL [11] 73.3 78.8
Seq2SQL [16] 48.3 59.4
SQLOVA [5] 83.6 89.6

Corresponding results for the WikiSQL benchmark are available
with recent methods achieving 62% of logical form accuracy (Acclf ),
89.7% of execution accuracy (Accex), which are the main metrics to
evaluate most frameworks. In Table 1, we show Acclf and Accex on
the WikiSQL test set for DBVinci and compare to other approaches.
Execution accuracy of DBVinci shows competitiveness when com-
pared to other methods that are fine-tuned (IncSQL, RAT-SQL and
SQLOVA) and, surprisingly, even better than other non fine-tuned
models (Coarse2Fine, HybridNet, Seq2SQL).

One can observe that the string matching between predicted and
labeled queries differ in 38% of the evaluated NL queries. However,
execution accuracy tends to perform higher results than logical
form because, even if label query and predicted query are not equal
strings (syntactically different queries), they carry the same seman-
tic meaning, returning the same registers and columns of tables

from the query. That tends to happen because our SQL process-
ing engine often generates query prediction with LIKE clauses in
queries. Furthermore, we observed that there was no false posi-
tives in the execution accuracy. A false positive may occur when
two queries return the same result, but are semantically different
(e.g., when they return aggregation of two different columns that
accidentally yield the same value).

For zero-shot metric, the generated queries were manually vali-
dated, since the labels are unseen and there is no benchmark to com-
pare queries. Table 2 presents examples of predicted SQL queries
generated by DBVinci. The queries in NL were also predicted by
the model. Also, to perform zero-shot, we consider inference of NL
queries unseen from the dataset and also generated NL queries that
we asked the model to produce and, from those, we asked the model
to convert them to SQL queries. We achieved 90.0% of accuracy in
this zero-shot experiment. Even though CodexDB was not part of
Table 1, it reports 22% of accuracy in zero-shot learning approach.
So, it is possible to conclude that we performed well in this metric.

6 CONCLUSION AND FUTUREWORK
In this work, we made experiments with PLM GPT-3.5 model using
DaVinci in order to solve the text-to-SQL task. The proposed model
shows high performance in zero-shot setting without a task-specific
annotated training data. Furthermore, different from most well-
known models, we do not perform pre-training nor fine-tuning. By
employing the engine of DaVinci from GPT 3.5 version as a text-to-
SQL parsing, we obtained competitive results with related methods.
In this approach, our results are relevant since our SQL processing
engine achieves higher results of execution accuracy compared to
RAT-SQL and SQLOVA. Both methods implement fine-tuned PLMs
in their architectures.

In future research, we intend to explore the power of non fine-
tuned PLMs in the same family of GPT, such as GPT-Neo and
GPT-J. Altough DaVinci engine is newer and has more parameters
compared to those ones, the weights of those models are available to
explore NLP tasks, which makes the architectures more transparent
to implement compared to the method in this research. Our goal
of implementing these architectures for the text-to-SQL task is to
investigate the trade-off behavior of having a more transparent
model and having a more robust model in order to find the best
text-to-SQL solution within the GPT family without the fine-tuning
paradigm.

Table 2: Examples of predicted SQL queries generated by DBVinci given NL queries in a zero-shot setting.

Natural Language Query Predicted SQL Query

What is the number of managers with salary less than 5,000? SELECT COUNT(*) FROM managers
WHERE salary <5,000;

Who are the employees of sector B? SELECT * FROM employees WHERE sector = ‘B’;

How many cell phones were sold in March? SELECT COUNT(*) FROM cellphones
WHERE date_sold BETWEEN ‘2020-03-01’ AND ‘2020-03-31’;

Say who are the employees with the highest amount of sales?

SELECT employee_name, SUM(sale_value) as sales_amount
FROM employees INNER JOIN sales
ON employee.idemployee=sales.id_employee
GROUP BY employee_name ORDER BY sales_amount DESC;

Which products are available in store X? SELECT product_name FROM products WHERE store = ‘X’;
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