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The design of State Feedback (SF) and Static Output Feedback (SOF) controllers for nonlinear discrete-
time systems subject to time-varying parameters is discussed in the context of Difference-Algebraic Rep-
resentations (DAR) and parameter-dependent Lyapunov functions applied to obtain convex conditions in
the form of Linear Matrix Inequalities (LMI). The proposed conditions guarantee the system robust sta-
bilization and provide an estimate of the Domain-of-Attraction (DoA). Firstly, a novel strategy for gain-
scheduled SF control is proposed incorporating information on the system’s nonlinearities to compute the
control action. Secondly, a new gain-scheduled SOF control design solution is derived, without structural
constraints imposed on the output matrix and without making use of iterative algorithms, unlike most
approaches in the current literature. Finally, numerical examples illustrate the proposed methodology’s

© 2022 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Most dynamical systems in real-world applications present
nonlinear behavior, such as electromechanical [42,47], electronic
[37], chemical [16], and biological [6] systems. Generally, the sta-
bility analysis and the control design for nonlinear systems are
very challenging. However, considering the nonlinear characteris-
tics of certain systems is essential to model nonlinear phenomena
and ensure the validity of results beyond the vicinity of equilib-
rium points [18]. In addition, the use of nonlinear control strategies
can be important to achieve better performance for the closed-loop
control system than what can be achieved by using linear tech-
niques [41].

As a consequence of the benefits of addressing nonlinear as-
pects in control systems, the development of analysis and synthesis
conditions for nonlinear systems has received a lot of attention in
the last decades. The majority of recently proposed approaches use
Linear Matrix Inequality (LMI)-based tools [39] for stability analysis
and control design based on Lyapunov Stability Theory [18]. In this
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context, an approach widely explored by researchers is to consider
a compact region in the state space in which an estimated Domain
of Attraction (DoA) can be determined, in which the asymptotic
stability of the system is guaranteed [1,2,4,10,23,26,33,34,43]. Since
constraints on system states usually have to be enforced in prac-
tical applications due to physical limitations, these approaches are
quite promising. In this investigation, we are particularly interested
in the regional stabilization of a class of discrete-time nonlinear
systems subject to time-varying parameters.

The class of systems considered in this research covers all sys-
tems that can be modeled as a Difference-Algebraic Representation
(DAR) [9], also called Recursive-Algebraic Representation (RAR)
[4,23] - the discrete-time counterpart of the Differential-Algebraic
Representations [8,43,44]. This representation allows us to system-
atically account for rational nonlinearities. The motivation to inves-
tigate rational systems is their use to model a wide range of phys-
ical phenomena by relying on first principles or through the ap-
plication of nonlinear system identification and realization theory
[40]. Nevertheless, the use of DARs was not extensively explored in
control theory for discrete-time systems. Contributions in this field
include stability analysis [4,24], State Feedback (SF) control design
[5,35], and filter design [9].

In the context of stability analysis, less conservative results
were obtained by searching for polynomial and rational Lyapunov
candidate functions [4]. However, due to inherent difficulties in the
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development of synthesis conditions, approaches to DAR initially
used quadratic Lyapunov functions, and linear SF controllers to ro-
bust stabilization and DoA estimation [23]. Recently improvements
were reported in Reis et al. [35] based on the use of parameter-
dependent Lyapunov functions and gain-scheduled SF controllers.
One of the purposes of this paper is to present further develop-
ments upon these previous works, reducing the conservativeness
by incorporating information about the system’s nonlinearities in
the control law.

Another purpose of this investigation is to address the design
of Static Output Feedback (SOF) controllers, a challenging stabi-
lization problem not well addressed in the context of DARs. The
SOF control design problem has received a lot of attention in the
past years because it is simple to be implemented in practical sit-
uations where only partial state information is available in real-
time [21,30]. However, the design of SOF control schemes is con-
sidered to be harder to solve due to its nonconvex characteriza-
tion, even in the context of linear systems [31,32]. Most results
are restrictive and conservative. For instance, some methodologies
require a constant output matrix or particular similarity trans-
formations [12,14]. Besides that, it is possible to find in the lit-
erature methodologies based on iterative algorithms or stabiliza-
tion conditions that rely on the scalar search of different parame-
ters, which increases the computational effort [20,36,46]. There are
also two-step approaches, where the first step consists of search-
ing for an SF controller and then the SOF control is obtained
from the initial results [8,13]. More recently, in Peixoto et al. [27],
28] it was proposed an alternative one-step approach to compute
scheduled output-feedback control gains for discrete-time nonlin-
ear parameter-varying systems with time-varying delay in the state
and also the case for fuzzy systems [29].

Based on the previous discussions, this paper proposes novel
stabilization conditions to design gain-scheduled SF and SOF con-
trollers for rational nonlinear discrete-time systems with time-
varying parameters described in a DAR form. The proposed con-
ditions are presented in the form of LMIs obtained by considering
parameter-dependent Lyapunov functions and they provide an es-
timate of the closed-loop DoA. Our methodology consists in one-
step approach such that no iterative algorithms are required, and
auxiliary decision variables are introduced only aiming at less con-
servative results. More specifically, our main contributions can be
summarized as follows:

« A novel sufficient condition to design nonlinear gain-scheduled
SF controllers for regional stabilization of discrete-time nonlin-
ear systems is provided. Compared to other proposed method-
ologies for DARs in a similar context [23,35], the novelty of
this approach is the use of information on the system’s nonlin-
earities to synthesize the control law. The proposed technique
is relatively simple for control design and implementation and
can drastically reduce the conservativeness of the results, as il-
lustrated by numerical examples.

A new sufficient condition for regional stabilization of discrete-
time nonlinear systems by gain-scheduled SOF controllers, al-
beit not explored in the context of DARs for discrete-time non-
linear systems, is presented. In this case, previous works in
the context of Linear Parameter Varying (LPV) Systems have in-
spired our research, as for instance [30,31], in which no congru-
ence transformations are necessary. However, we present a new
methodology in which the control approach can be applied to
nonlinear systems with parameter-dependent and/or nonlinear
output matrix.

Hereafter, the paper is organized as follows. Section 2 presents
the problem formulation. The conditions to synthesize nonlinear
gain-scheduled SF controllers are given in Section 3. In Section 4,
the gain-scheduled SOF control design methodology is presented.
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Section 5 brings important aspects to the implementation of the
proposed control laws in specific situations. Numerical examples
are provided in Section 6. Finally, concluding remarks are given in
Section 7.

Notation: R" is the n-dimensional Euclidean space, R™ " is the
set of m x n real matrices, I, is the n x n identity matrix and
diag{...} stands for a block-diagonal matrix. For a real matrix
M, MT denotes its transpose and M > 0 (M > 0) means that M
is symmetric positive definite (semi-positive definite) and M, is
the ith row. For a symmetric block matrix, the symbol  stands
for the transpose of the blocks outside the main diagonal block.
Let Z, =[1, n] ¢ N, n € N. For two sets X c R™ and A c R",
the notation X x A ¢ R™*"s is the cartesian product of X and
A Ay = {ap e RN Y ap =1, ap,,, > 0} represents the
unitary simplex, where p represents an index used to distinguish
different polytopes, N is the number of vertices and p is the

vth entry in the vector at time k. Finally, the following notation is
adopted to represent matrices of affine functions of (x;, §;):

Ny Ns

M(xy, 8¢) = Z Z ax(i)r<a5u)r<M“‘

i=1 I=1

where Ny and N5 denote the number of vertices of the x; and §
polytopes, respectively.

2. Problem statement

Consider the following class of discrete-time nonlinear systems:

Xip1 = f (X, 8) + 8, Si) U,
Vi = h(x, 8) = C(X, Si) Xk (1)

where x, € X C R™ is the state vector of the system, §, € A C R"™
is a time-varying parameter vector, which is available online to the
controller, u, € R™ is the control input, y, € R is the measure-
ment output, and C(x;, §;) € R*™ is the output matrix.

In this research, we assume that functions f(.): R™ x R" —
R™ (with f(0,8;) =0) g(-) : R™ x R" — R™>Mu and h(-) : R™ x
R"™ — R™ are rational functions well-posed on X x A. This as-
sumption regards the class of rational systems and guarantees the
existence and uniqueness of the solutions of the difference equa-
tion in a neighborhood & x A of the equilibrium point f(0, §;) =
0, V(Sk e A.

It is well known that a Difference-Algebraic Representation
(DAR) can represent the class of rational systems in the discrete-
time domain [7,8,24,25,44]. Thus, system (1) can be recast as a DAR
given by

Xip1 = A1 (Xp, 81Xy + Az (Xge, 874 + Az (X, S ) U,
0 = Q1 (X, 81X + 20 (Xk, i) 7Ty + 23 (X, Sy ),
Vi = G (X, 8)xy + Co (Xg, 81) 7T, (2)

where 7, 1= (X4, 8, U) € R™ is an auxiliary vector of non-
linear functions with respect to (x,d;) and affine with respect
to (u;). The matrices Aq(xy, 8;) € R™>M - Ay (X, 8) € RMWxNMr,
A3 (X, 8) € R Q2 (xy, 8)) € RITXM, - Qo (X, §) € R XM,
Q3 (xy, 8) € R XM, Cp(xy, &) € RWX™, and Gy (X, &) € R
are affine functions of (xg,§;), such that €,(x;,§;) is a square
full-rank matrix for all (x;,8;) € X x A.

The correctness of the DAR could be verified by replacing the
nonlinearity vector 7, given by the null algebraic equation in
(2) with the corresponding expression bellow so that (1) is ob-
tained.

T = =25 (g, 81 [21 (Ree, B + Q3 (X, i)y ]- (3)
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It is important to point out that the decomposition of the non-
linear system in a DAR form is not unique, which can lead to con-
servative results. In this paper, to reduce this potential conserva-
tiveness, we use the concept of linear annihilator, represented in
this paper as Ry(x;) € R"*™ (see Appendix A), and originally pro-
posed in Trofino and Dezuo [45] for DAR models.

More often than not, e.g. due to physical limitations or associ-
ated with a validity region for the system mathematical model, one
must take into consideration a domain of operation for the system
states. In this context, in this investigation the state trajectories of
system (2) will be considered to evolve in the following polyhedral
set (which will be turned into a positively invariant set by control
design):

Xi={xeR™:aqpx <1, pely}, (4)

where ap € R™ is a constant ny-dimensional vector of parameters,
and n, is the number of hyperplanes that characterize the re-
gion X.

This research is concerned with developing LMI-based condi-
tions that provide the stabilization of system (1) using the repre-
sentation in (2). To achieve the main purpose of this investigation,
the following Lyapunov function candidate is considered:

Ns
V (X, 8) = x{P(8)x¢.  P(8) =Y a5, B. B =P >0. (5)
=1

The level set associated with the function (5) is defined by
Lpoa = {Xk e R™ : V(xy, 8,{) <1, V8k € A} (6)

Lemma 1 (adapted from Jungers and Castelan [17]). The level set
(6) associated with the function (5) verifies that

N @, (7)

Lpoa =

with £(P. 1) = {x, e R™ : xI Py, < 1}.

Proof. X € Lpop < ng € A,V(Xk, 6]() <le Xk €
Nsea €(P(3)). 1). Moreover,

N EPG).Hc [ &@1)

SreA le{1,....Ns}

To prove that
() €@ 1)c ) EPG. ),

le{1,...,N;s} SreA

Since ngl s = 1, the above inequality can be recast as

Ns
T
X Zcx(g“)kP, X < 1, le IN&'
=1

Thus,
le((Sk)xk <1, 8’( € A.
This implies that x, € £(P(8y), 1), or x; € N ea EP(S), 1). O

If AV = V(Xk+1, 8k+l) — V(Xk, (Sk) <0, ka € Lpoa, then (5) is
said to be a Lyapunov function and Lp., is a contractive invari-
ant set with respect to the closed-loop system, which ensures that
for xg € Lpoa, X, — 0, when k — oc.

By considering system (1) in a DAR form (2), this work is
particularly concerned with proposing sufficient conditions to de-
sign state and static output-feedback controllers such that L£py C
X, V8, € A, is an invariant set with respect to the closed-loop, and
Lpoea i as large as possible.
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3. State feedback control

This section presents novel stabilization conditions for discrete-
time nonlinear systems, considering all aspects stated previously.
The novelty of the proposed conditions is related to the fact that
the information about the nonlinearity vector 7 is incorporated in
the control law. Thus, we have

U = G (X, 8K (xk. Si)& (8)

with K(xy, 8;) € Rwx(mtt7) and  G(xy, 8;) € R™*™ matrices of
affine functions with respect to (x;.d;), to be determined, and
T ad
&= =]
Remark 1. Notice that, we consider both the system model and
the control input represented from the same basis function 7.
However, the elements of ), that do not appear in the system rep-
resentation can be removed by nulling the respective columns of
the DAR matrix A; (X, §;). On the other hand, it is possible to re-
move the elements of ), that we do not want at the control input
by nulling the respective columns of matrix K(xy,d;) in the con-
trol input (8). For instance, the proposed control law includes the
particular case

ue = G (X, 8K (xg. S1)x1, (9)

by considering K(xy. &) = [K(x.8) 0] in (8), with K(x,.5) €

Rnu XNy

In the sequel, sufficient conditions to compute the SF control
matrices that stabilize the nonlinear system (1) are presented.

Theorem 1. Consider the nonlinear system (1) and its DAR (2). Let
€ be a given positive scalar. If there exist matrices P(8;) = PT(§;) >
0, P(8;) e R™*M L(x,,8;) € R(an+nu+nﬂ)x(nx+nn+nq)’ G(x. 8)) €
R and K(xy,8;) e RMuxx+nr) sych that the following in-
equalities hold

Ty Xk, 8k 8kp1) + Lk, 80 T2 (xk, 8x) + T3 (X, S)LT (% 8) < O,

(10)
1 *
|:ap P(31<)] =0. peln. (i
and
G" (xk. 8) + G(Xy, 8) > 0, (12)
where
P((SkJrl) * *
Iy = GKT(Xk,(Sk)Ag(Xk,Sk) —Pa(8)  + |,
—€GT (X, 81 AT (xk. 8¢ 0 0
P(S
P8 = [ e 5},
-1 A% 8k)  Ax(X. 0)  As(xy, Sg)
=10 Q. 8) Q0. 8) Q3(x ) |,
0 N 0 0

then there exist a Lyapunov function (5) and a controller (8) such
that, Vxq inside Lpos and &, € A, the trajectory of x, converge to the
origin when k — co.
Proof. Inequality (10) can be recast as
By 4+JEy 4+ BT 4L, + TIIT <0, (13)
N—

I

with 8, =[0G 1(x. K (x. &) 1],

P(k+1) * * €Az (X, 81) G (X, 8¢)
g1 = 0 —P,(8;) |, and J= 0
0 0 0 0
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Defining ¢ =[xf,, & uuT, one has that Ey¢=
0and I'yo =0. By pre- and post-multiplying (13) by ¢T and
its transpose, respectively, results in AV, = XZ+1P(5I<+1)XI<+1 -

xZP((S,()x,{ < 0. This proves that if the condition (10) is feasible,
then V(x;, ;) is a Lyapunov function and the controller (8) en-
sures that the origin of the closed-loop system is asymptotically
stable.

Multiplying (11) with [1
on the right, yields

—x[] on the left and its transpose

1—x{ap — apx + X, P(8)x, = 0.

Since xZP(Sk)xk <1 for all x € Lpys, this inequality implies that
agxk < 1. This guarantees the inclusion L£pp C X.

Finally, condition (12) ensures the existence of the inverse of
matrix G(xy, 8;), Vx, € X and §; € A, which is necessary to guar-
antee the computation of the control law in (8). O

An alternative to find the largest DoA is to consider the follow-
ing subset of Lpea

QDS () &@). (14)

le{1,...Ns}

In the next Corollary, Theorem 1 can be used to maximize the
estimated DoA from a Semidefinite Programming (SDP) problem
subjected to LMI conditions.

Corollary 1. Given a positive scalar € > 0. If there exist symmet-
ric matrices Q € R™*™ and P(§;) > 0, P(§;) € R™*™, and any
matrices L(x;., 8;,) € RCw+utnm)x(nxtnz+ng) - G(x,, §;,) € R™>™ and
K(xg, 8) € Rux(m+nz) - satisfying the following optimization problem
forall §; € A and x; € X:

{min {trace(Q)} (15)
subject to (10)-(12), and Q — P(4;) > 0,

then the SF controller (8) asymptotically stabilizes the closed-loop sys-
tem, composed to (1) and (8), around the origin, and £(Q, 1) € Lpea
is an estimate of the DoA.

Proof. The additional inequality in (15) ensures that £(Q,1) C
Lpoea» Which is defined in (7), and the rest of the proof follows in a
straightforward way as in the proof of Theorem 1. O

4. Static output feedback control

Section 3 presented the conditions to design an SF controller for
regional stabilization of discrete-time nonlinear systems when full
state information is available. In this section, considering practical
applications in which only the system output is measurable in real-
time, our goal is to design an SOF controller in the form

ug = F 1 () H ()Y, (16)

with H(8;) e R™*" and F(,) € R™>™ matrices of affine func-
tions with respect to (;), to be determined.

Remark 2. Since SOF controllers are an alternative more explored
in practical situations where the complete state information is
not available for real-time control implementation, the information
about the system states vector is not taken into account in the gain
matrices F(-) and H(-), which are only dependent on parameters
(k).

Theorem 2 in the sequel presents a new SOF control design for
the nonlinear system (1).

Theorem 2. Consider the nonlinear system (1) and its DAR (2). Let
€ be a given positive scalar. If there exist matrices P(8,) = PT (8;) >
0, P(ak) € RMWxNx, S(Xk, ak) c R(znx+ny+nu+n7{)X(nx+ny+nn+nq)’ F(Sk) c
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R and H(3),) € R™*", such that the following inequalities hold

Y1 (Xes k. S1) + S 81) Vo (X, 8g) + Y (X, 81)ST (%, 8) < O,

(17)
L 1, (18)
a, PG|~ P
and
FT(5k) +F(8;) > 0, (19)
where
—P(&y) * * * *
0 P(8r41) * * *
Y= | eHT(8)AT (xk, ) HT (81)AL (X, 8) 0 * *
—€FT ()AL (. 8k)  —FT(8)AL (. 8)  €H(8k)  Aag
0 0 As3 Asqs O
Ays = —€F(8;) — €FT(8y),
Asz = Q3(xy, 6)H(Sy),
Asg = —Q3 (X, 8)F (8),
Ai(x, 8) -1 0 As(x.8)  Ax(xy, 8p)
T, = G(x¢.8) 0 I 0 Co (X &)
Q(X8) 0 0 Q30,680 Q2 8)
() O 0 0 0

then there exist a Lyapunov function (5) and a controller (16) such
that, Vxq inside Lpos and &, € A, the trajectory of x, converge to the
origin when k — co.

Proof. Inequality (17) can be recast as

©1 + RO, + OIRT + 51, + YIS <0,

where ®,=[0 0 F'(§)H() -1 0]
~—P(8;) * x k%
0 P(8ky1) * x  x

0 = 0 0 0 % x|, and
0 0 0 0 =«
0 0 0 0 O

r€A3 (X, 81)F (8x)
As (X, 81)F (81)
R = 0

€FT (8;)
| Q23 (X, 8,)F (8)

Defining ¢ =[x; xp., Vi Uuf 7rkT]T, one has 0,9 =
O0Oand Y, % = 0. Multiplying the latter inequality by ®T on the
left and its transpose on the right, yields AV}, = XL]P((S,{H)ka -
xEP(Bk)xk < 0. Thus, if the condition (17) is feasible, then V (x;, 8;)
is a Lyapunov function and the SOF controller (16) ensures that the
origin of the closed-loop system is asymptotically stable.

Constraint (18) is obtained following the same steps in
Theorem 1 and condition (19) ensures the existence of the in-
verse of matrix F(8;), V&, € A, which is necessary to guarantee
the computation of the control law in (16). O

Similarly to the previous results stated in Section 3, the next
Corollary can be used in order to maximize the estimated DoA.

Corollary 2. Consider a given positive scalar € > 0. If there exist sym-
metric matrices Q € R™ "™ and P(§;) > 0, P(§;) € R™>™ and matri-
ces S(Xk, 8,() c R(an+ny+nu+nn)><(nx+ny+nﬂ+nq), F((Sk) € RMwxMu, and
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H(6) e Ry satisfying the following optimization problem for
all §, € A and xj, € Xx:

{min {trace(Q)} (20)
subject to (17)-(19), and Q — P(§;) > 0,

then the SOF controller (16) asymptotically stabilizes the closed-loop
system, composed to (1) and (16), around the origin, and £(Q, 1) C
Lpoea is an estimate of the DoA.

Proof. The additional inequality in (20) ensures that £(Q,1) <
Lpea and the rest of the proof follows in a straightforward way as
in the proof of Theorem 2. O

Remark 3. Notice that the proposed methodology can be applied
to rational systems with nonlinear and/or parameter-dependent
output matrix. Besides that, no structural constraint is imposed on
the output matrix, and the SOF control design problem is solved
directly, without the necessity to obtain an SF controller in the first
step or use iterative algorithms, unlike other literature approaches
[8,12-14,20,46]. It is worth emphasizing that the given scalar € is
introduced only to likely yield a less conservative result.

Remark 4. Toward developing the results from Theorems 1 and 2,
we decided to adopt a parameter-dependent Lyapunov function,
aiming to obtain LMI conditions which can provide less conser-
vative results compared to the ones obtained by using standard
quadratic Lyapunov functions. To potentially reduce the conser-
vatism, enhanced Lyapunov functions are usually employed for
stability analysis. In the context of discrete-time nonlinear sys-
tems described in a DAR form, to the best of the authors’ knowl-
edge, only Coutinho and de Souza [4]| had proposed analysis con-
ditions based on polynomial Lyapunov functions, but without pro-
viding synthesis conditions due to its inherent difficulties. On the
other hand, in the literature, there are also methods using sum of
squares (SOS) decomposition of the Lyapunov stability conditions
that can be cast as a semidefinite program (SDP) [3,38], but this is
not the aim in this work.

5. On the implementation of the control law

The proposed approaches so far have considered, in the sys-
tem model, the presence of time-varying parameters (J;), which
are supposed to be exactly known, and this information is used in
the gain-scheduled control strategy, aiming to achieve less conser-
vative results.

In real-world applications, a more realistic situation is the case
where the dynamical system presents physical parameters that are
not precisely known, i.e., the nonlinear system model includes un-
certain parameters whose bounds, in many cases, are known and
can be taken into account in the stabilization conditions. In this
context, the proposed control laws can be adapted to deal with
the parametric uncertainties associated with unknown parameters.

For SF robust control, Theorem 1 can be applied by considering
the matrices G(-) and K(-) only affine with respect to states (x;).
In this case, if the nonlinearity vector, 7, depends on part of the
parametric uncertainties, we must null the respective columns of
matrix K(-), as discussed in Remark 1. For SOF robust control, it is
possible to apply Theorem 2, defining F and H as constant matri-
ces.

Another situation that requires attention in practical applica-
tions is when Q3 (x, 8;) # 0, i.e., vector m; is dependent on (uy).
Concerning the design of SF controllers, as for the case of m;, de-
pendent on uncertain parameters, it is possible to deal with this
problem by nulling the respective columns of matrix K(-) and solv-
ing the stabilization conditions in Theorem 1. Alternatively, the fol-
lowing Corollary can be used to synthesize an SF controller incor-
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porating the complete information of vector i, in which the final
implementation of the control law is guaranteed.

Corollary 3. Consider a given positive scalar € > 0. If there exist sym-
metric matrices Q € R™*™ and P(§;) > 0, P(§;) € R™>™, and any
matrices L(xy, §;) € R HMutnm)x(xtnzthe) - G(x,, §;) € R™*™, and
KX 81) = [K(x. 8)  K(xp 8) ] K(xpe. 8¢) € R R (x4, 8y) €
R™>Nx - satisfying the following optimization problem for all 8, € A
and X, € X:

min {trace(Q)} (21)
subject to (10), (11), Q —P(8;) > 0, and

KXy 81) + QF (¢, 8) -0
— (T (xg, 8k) + 22(x1, 81))
(22)
then the SF controller (8) asymptotically stabilizes the closed-loop sys-

tem comprised by (1) and (8), around the origin, and £(Q, 1) € Lpea
is an estimate of the DoA.

,,GT (Xk, (Sk) + G(xka 3]{)
KT (%, 8x) + Q3 (Xp, 8)

Proof. Note that, from (8), we have
e = G (X, 81) [K (% 81)xk + K (i, $1) 711 ]

where K(x;,8,) = [K(x. &) K(x.8)] in (8). At the same
time, from (3), if Q3(x;, 8;) # 0 and using the assumption that
3&251 (X 0r), one has that (dependency with (x;, §;) was dropped
for clarity purposes)

U, = Gil [I%Xk — IQQEI (Q1Xk + Q3uk)],
which can be rewritten as
[G+KQ3" Qs uy = Kxy — KQ3 ' Q1.

Therefore, the final implementation of the control law (8) is given
by

w = [G+RQ'Q] 7[R - RQ;' Jxi. (23)

as long as the matrix M(x. §) = [G + K, 'Q3] is invertible.

If Q3=0 or K=0, M(x,.,8;) is nonsingular from the satisfac-
tion of (12) in Theorem 1. On the other hand, if 23 # 0 and K # 0,
from (22) one has

G K
DT (X, 8) + P (X, 8) > 0, D (xy, &) =
Q3 -2
From the feasibility of the above inequality, ®(x;, §;) must be
invertible. Notice that matrix ®(x, §;) can be recast as

I —RQ;! RO 1Q
D (xy, 8y) = [0 e ][G+ o2 3 _?22}

I 0
—92_1 Q3 1|
det(P(x;. 8)) = det(G + K2, Qs3) det(—2,) = det(M) det

Therefore, if condition (22) is satisfied, then det(®(xy, §;)) #
0 and M(xy,8;) is invertible. The rest of the proof follows
in a straightforward way as in the proofs of Theorem 1 and
Corollary 1. O

Remark 5. Notice that condition (22) in Corollary 3 requires the
additional restriction that Q7 (x;, 8,) + €2 (x;, §;) must be a nega-
tive definite matrix. In the cases where matrix €2, (-) has a definite
sign, the fact that €2, () must be negative is not restrictive, as it is
possible to change the sign of this matrix in the definition of the
algebraic equation of the DAR, without loss of generality. If €2,(-)
has no definite sign but is constant, an alternative to guarantee
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Largest estimated DoA for system (24), from Corollary 2.

Lyapunov function

Polytopic region ()

Area of the estimated DoA

quadratic
parameter-dependent

[X1)kl < 0.42, [x5)] < 0.21
[Xa)el = 0.62, |x2)| < 0.32

0.2304
0.4836

that the additional constraint in (22) holds is obtained multiplying
the DAR algebraic equation on the left by —Qg (), as this results in
a new negative definite 2, (-) matrix. On the other hand, the cases
where Q,(-) is affine with respect to (x,d,) without a definite
sign are more complex and should be analyzed carefully depend-
ing on the problem. Despite this fact, considerably less conserva-
tive results can be obtained using the complete information of the
nonlinearity vector (7;,), as shown in Example 4.

6. Numerical examples

In this section, numerical examples are presented to demon-
strate the effectiveness of the proposed methodology. The stabi-
lization conditions were presented in an infinite-dimensional form,
which is not computationally tractable. Thus, Appendix B gives
the LMI relaxation employed to convert the conditions proposed
in Theorems 1 and 2 into finite sets of LMIs, which were imple-
mented in MATLAB (R2019) using the parser Yalmip and the solver
Mosek.

Example 1. Consider the following rational nonlinear system with
a time-varying parameter:

2 4
Xok SmX (i

X1 = (1 =8ay)Xeyk +

5 7
1 + X1k 1 + X0k
SyX(1yk 5
X@kst = Xk + Xk + 0575 + (T4 281y g
+ X0k
4
X1k
Vi = Xy + 28Xk + Toe (24)

(1k

with a corresponding DAR such that

4 3 2 T
- Xk Xk Xk X(1)k i|
= 2 2 2 2 :
L THXG THXG THXG T4,
G=[1 28qx] G=[1 0 0 0]

[0 1-3
A= 1“”‘},

[-8an 0 1 0 3 0
A=\ 0 0 0.580) A3 = 14280y |

0 0 -1 X(])k 0 0
|0 o0 |0 -1 X(1)k 0
=19 o] 2= 0 -1 Xap
_l 0 0 0 —X(1)k -1
[0
0
Q3 = 0
0

Defining A := {8, € R : |81y <0.13}, the optimization prob-
lem stated in Corollary 2 was solved to design an SOF controller
aiming to obtain the largest admissible polytope in the state space
and the largest estimated DoA, such that system (24) can be sta-
bilized. The results obtained from the proposed approach by con-
sidering a parameter-dependent Lyapunov function and a standard

quadratic Lyapunov function are summarized in Table 1. For bet-
ter clarification, the SOF controller gain matrices are described in
Appendix C.

The less conservative result was obtained by defining € =1 x
1078 and X := {x, € R? : |x()| < 0.62 and |x()| < 0.32}, to solve
the optimization problem (20), considering a parameter-dependent
Lyapunov function, which results in an estimated DoA with area
equal to 0.4836. In this case, the minimum value for the objec-
tive function related to the area of the estimated DoA is trace(Q) =
18.7632.

The obtained matrices P are given by:

P — [ 3.0374

~1.5727| | 3.7118
—1.5727 2=

—3.9998
10.5799 —3.9998 ’

14.4083

Fig. 1 depicts the largest estimated DoA (region filled in blue)
and some trajectories initiating inside it for different time-varying
sequences for 8, € A. These trajectories start at the boundary of
the DoA and converge to the origin.

Notice that the largest estimated DoA obtained by consider-
ing a parameter-dependent Lyapunov function is not an ellipsoid,
but the intersection of the two ellipsoids (magenta and green
dotted lines) associated with £(P,1). This example highlights
the non-ellipsoidal characteristic of the parameter-dependent Lya-
punov function, which can provide a less conservative result in
comparison with the use of standard quadratic Lyapunov functions.

Example 2. In this example, our goal is to use Corollary 1, consid-
ering a practical application with the presence of uncertain time-
varying parameters. In this sense, consider the inverted pendulum
model

() = ‘%sin(Q (t)) - % n %l? (25)
where g is the gravitational acceleration, [ is the length of the pen-
dulum rod, M is the total mass and b is the damping coefficient.
Besides that, 6 (t) is the angle from the vertical direction and 7 (t)
is the control torque.

Using the change of variables r=arctan(f), with sin(f) =
(2r)/(1 +712) and cos(@) = (1 —r2)/(1+12)

X1y (t) = x2(t),
2x1) (DX, (€) b

. g
X)) = Fxy(t) + —————— — =X () +
I 1+, () M

1 +xfl)(t)
T
(26)

Suppose that parameters b and M have uncertainties, such that
M =Mo(1+8¢(t)) and b =bo(1+ 8 (t)), with My and by be-
ing nominal values and the uncertain parameter vector §(t) =

[81)(®) 6<2)(t)]T. Using Euler’s first-order approximation, the
following discrete-time model is obtained:

Xk+1 = Xk + TX2)ks

X2k+1 = Xk + T[%x(l)k + fu(Xk. Oy Uk)]a (27)

where T is the sampling period and f,(-) is a rational function
with respect to (xi, §;), given by
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T T T T

0 0.2 0.4 0.6
Xy

Fig. 1. Estimated DoA and some state trajectories (blue dashed lines) for system (24). Lp, (region filled in blue) is the estimated non-ellipsoidal DoA obtained from
Corollary 2, based on parameter-dependent Lyapunov function. The ellipsoidal region represented by the black solid line is the estimated DoA from Corollary 2, considering
a quadratic Lyapunov function. The two ellipsoids (magenta and green dotted line) associated with £(P, 1) are also shown in this figure. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

2

2X1uXo bo(1+ 8) Xy
- 2

T+xg,,  Mo(1+80y) @

2
1+xmk

bl
2Mo(1+ 84y )2
Thus, system (27) can be recast as a DAR (2) with

X2k
Tk =11 +x§1)k

1 T
A1=TTg 1l

0 0 0 0 0
Ay =T b 1) X ,
2 0 2x(2)k _Mo(l +5(2)k) _ Pk (Dk
[

fn(xk: Bkv uk) =

X2k Uj
1 +6(1)k 1 +5(])k

XkX@2)k

2
1 + X1k

X1)kUk T
1+ 8(1)[( ’

IMGlZ  2Mol2
© 0 T
o 0 0o o0 o
As = T}’ Ql:[l 0 1 0 0] ’
L 2Mpl?
r—1 _X(l)k 0 0 0 0
Xk -1 0 0 0 0
Q=] 0 0 —1-day 0 0|.e=|o0
0o 0 0 1-8ay O 1
L 0 0 0 X(])k -1 0

Choosing T =0.05 s and considering My=10 Kg,
=2 m, g=938 m/sz, bp=05 Ns/m, and A :=
{8k € R2 : |84yl <0.1,8)] <0.9}, the optimization problem
(15) was solved for X :={x, e R?: |x(y)| < 0.35. x| < 0.75}
and € =1 x 102

Since the time-varying parameters (§) are not exactly known,
in this case, Corollary 1 is applied by considering matrices G(-)
and K(-) only affine with respect to states (x;), as discussed in
Section 5. Moreover, note that the last three elements of vector
are dependent on (§;). For this reason, the respective columns of
matrix K(-) were nulled, such that the SF control law does not de-

pend on (§;). In Appendix C, the obtained controller gain matrices
are described.

Fig. 2 depicts the largest estimated DOA (region filled in blue)
and some trajectories obtained by simulating the closed-loop sys-
tem from Eq. (27) and the control law (8), considering different
time-varying sequences for §; € A.

In addition, zoom images at different points are presented in
Fig. 2. At point 1 (top right corner), taking the DOA as a reference,
there are the overlapping ellipsoids £(P;, 1) (magenta), £(P, 1)
(cyan), £(P3, 1) (green), and £(P4, 1) (orange), in this order. On the
other hand, at point 2 (lower left corner), the order is reversed,
which shows that there are points of intersection between these
regions, as for the previous example. The estimated DoA is the in-
tersection of these four ellipsoids.

This example shows the effectiveness of the proposed method
when uncertain time-varying parameters are considered. The fol-
lowing numerical examples illustrate the methodology’s potential,
showing favorable comparisons with recently published similar ap-
proaches.

Example 3. Consider the following nonlinear system that does not
have time-varying parameters, adapted from [23]:

Xk+1 = X@2)k>
X2k+1 = Xk + 3X?1)k + Xy + Ug
Vi = X+ 1.2, (28)

which can be recast in a DAR, such that

o 1o 1 |l o0 B
Tk = X1k Al—[l 1 A= 3X)k A=

Q] = [x(l)k 0], Qz =-1, 93 =0,
G=[1 0] G=12xq (29)

Two situations are taken into account in this example. Firstly,
we consider that the whole information about the system'’s states
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Fig. 2. Estimated DoA and some state trajectories (blue dashed lines) for system (27). Lpp (region filled in blue) is the estimated DoA obtained from Corollary 1, based on
parameter-dependent Lyapunov function. The four overlapping ellipsoids (orange, magenta, green, and cyan dotted line) associated with £(P, 1) are also shown in this figure.
In addition, zoom images are presented at two points to highlight the crossing of the ellipsoids. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

Table 2

Largest estimated DoA for system (28) obtained from Corollary 1.
Control law Polytopic region (X) trace()P
Not dependent on 7, [x(1)k| < 0.81, x| < 0.81 3.0483
Dependent on 1, |X1)k| <10.00, |x(3),| <10.00  0.0200

is available. In this case, Corollary 1 is used to synthesize an SF
controller. Secondly, we suppose that only partial state informa-
tion is measured and an SOF controller is designed by applying
Corollary 2.

- Case 1: SF Control Design

The problem, in this case, is to design an SF controller in or-
der to obtain the largest admissible polytope in state space and
the largest estimated DoA, such that system (28) can be stabilized.
It is worth mentioning that this example is explored in Oliveira
et al. [23], Reis et al. [35] in the context of rational systems with
input saturation without incorporating information about the sys-
tem'’s nonlinearities in the control law. Although our results com-
pared favorably with those in Oliveira et al. [23], Reis et al. [35],
even when the conditions were changed to disregard saturation
limits, the comparison with these works could be unfair since the
control design with saturation is not taken into consideration in
our current research. In this sense, the results obtained applying
Corollary 1 with and without the nonlinearity vector in the con-
trol law (as discussed in Remark 1) are presented to demonstrate
the potential of the proposed methodology in drastically reducing
the design conservativeness.

In this analysis, we considered that the  sys-
tem states are limited to the polyhedral set X :=
{X € B2 1 X1 < 10.0, |x(2)| <10.0}. Thus, the optimization
problem presented in (15) was solved and the results obtained are
shown in Table 2.

From Table 2, one can see that by incorporating information
about the system’s nonlinearities in the control law, it is possi-

10
5
g 0
-5
-10
-10 -5 0 5 10
xy
Fig. 3. Largest estimated DoA (blue solid line) and some trajec-
tories (blue dashed line) obtained wusing Corollary 1 with X :=

{x € R? : [x)| < 10.0 and [xz| < 10.0} (red solid line) and the control law
dependent on ;. The estimated DoA obtained by considering the control law,
which is not dependent on i, is represented by the black dotted line. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

ble to obtain feasible results for a considerably larger polytopic
region. As a result, the largest estimated DoA is obtained from
Corollary 1 with the control law dependent on 7, which provides
the smallest value for the objective function trace(P) = .0200, with
X = {x e R? 1 x| = 10.0, [x(2)| <10.0} and € = 1.



G.L. Reis, RE. Aratijo, LA.B. Torres et al.

0.8

estimated DoA

Fig. 4. Largest (blue solid line) and some trajec-
tories (blue dashed line) obtained wusing Corollary 2 with X :=
{X € B2 < [xqyl < 1.09, [X)| <0.97)(red solid line). (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3 depicts the largest estimated DoA (blue solid line)
and some trajectories initiating inside this region. Note that all
trajectories starting at the boundary of the DoA converge to
the origin. Fig. 3 also shows the estimated DoA obtained from
Corollary 1 with the control law not dependent on 7, (black dot-
ted line).

Since there are no time-varying parameters, the use of a stan-
dard quadratic Lyapunov function (P(d;) = P) might be considered.
However, from Fig. 3 notice that how the estimated DoA obtained
via the proposed approach is considerably less conservative when
the system’s nonlinearities are taken into account in the control
law. The area of the largest estimated DoA from Corollary 1 with
the control law dependent on m; is given by 314.1583, while the
area obtained by considering the control law, which is not depen-
dent on m, is equal to 2.0612.

- Case 2: SOF Control Design

European Journal of Control 67 (2022) 100718

Now, suppose that only the information about X, is avail-
able, given by the measured output y. In this case, it is possi-
ble to synthesize an SOF controller from Corollary 2. By using the
proposed approach, the largest estimated DoA was obtained for
X = {x e R : x| = 1.09 and |xp| < 0.97}.

Fig. 4 presents the ellipsoidal region that represents the esti-
mated DoA and some trajectories initiating inside it, which con-
verge to origin over time. In this case, the area of the estimated
DoA is 2.8639. Note that the measured output presents informa-
tion about the system’s nonlinearity. Thus, from the SOF controller
designed by applying the proposed methodology, it was possible to
obtain a larger estimated DoA than that found using a SF controller
which do not take into account the system’s nonlinear behavior in
the control law.

In Fig. 5, it is possible to verify the relation between the value
of the scalar € and the minimum value of the objective function
trace(P) obtained from Corollary 2.

One can see that the improvement achieved is not a mono-
tonically increasing function of €. The better result obtained was
trace(P) = 2.5492, with € = 0.1020.

This case shows the effectiveness of the proposed method when
the complete information about system states is not available. Be-
sides that, it illustrates how this new approach can be used to de-
sign SOF controllers when the measurement output presents poly-
nomial functions with respect to (x;).

Example 4. Consider the following nonlinear system, without
time-varying parameters, borrowed from Guerra and Vermeiren
[15]:

Xk+1 = Xk — X1)kX 2k + (5 4+ X)) U,

Xkt1 = =Xk — 0.5% ) + 2X (1)U, (30)

which can be recast in a DAR, such that

T
Ty = [x(l)kX(Z)k X(l)kuk] )

1 0 11 5
A= [—1 —0.5]’ Az = [ 0 2]’ Az = [0]’
_ 0 X(])k _ -1 0 _ 0
Q = [0 Vloee=lo G| (e, @Y

Considering |x(1y,| < b, the goal is to obtain the maximum vari-
ation for the value b such that there still exists a feasible solu-
tion, that is, there is a state-feedback control guaranteeing the

2.66

2.64

2.62

26 §

trace(P)

2.58 \

2.56 -

**** HH
HFH ks xR RK

****

2.54 : : :
0.07 0.08 0.09 0.1

0.12 0.13 0.14 0.15

Fig. 5. Relation between € and trace(P).
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Table 3
Maximum variations of parameter b obtained using existing
conditions and the proposed approach.

Synthesis condition Maximum b
Theorem 5 in Guerra and Vermeiren [15] 1.539
Theorem 2 in Lendek et al. [19] 1.757
Theorem 4 in Coutinho et al. [11] 2.041
Corollary 3 4.800

40 SRR

- o
v X% o o
1 Q ) 000 O 0]
1 (( 3K x—yé
1 )hh&%m O
20 ragrReREEREaaReaCanees set
T 00 )0 ¢ T
¢ 2 000
8 : Sogel
g oo |
(T O
g E 83
- H'O 0 of
D f =
1 o m
: g-( XXXWXX = XXI)
-b -1 0 1 b
I

Fig. 6. Stability regions for the closed-loop system with the control gains designed
using Corollary 3 (o) and Theorem 4 in Coutinho et al. [11] (-) with b = 2.041.

asymptotic stability. Table 3 presents the largest b obtained from
Corollary 3 and other control design conditions existing in the lit-
erature in the context of fuzzy discrete-time Takagi-Sugeno fuzzy
models [22].

Initially, in Guerra and Vermeiren [15], feasible solutions were
obtained for b < 1.539. This result is improved using the method-
ology proposed in Lendek et al. [19], which allowed to solve the
problem for b < 1.757. Recently, a better result was obtained in
Coutinho et al. [11] by delayed nonquadratic Lyapunov functions,
with b <2.041. The comparison shows that, from the proposed
methodology, it is possible to obtain feasible results for a largest
value of b, given by b = 4.800, with € =1 x 10,

—x
4 - =22l

System states

—_

0 5 10
Sample

(a)

15
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It is worth emphasizing that, in the other methodologies pre-
sented in Table 3, the regional stabilization with an estimated DoA
was not took into account. In this sense, Fig. 6 shows a compari-
son between the stability regions for the closed-loop system with
the control gains designed using the proposed approach and that
proposed by [11], considering b = 2.041. Note that the proposed
conditions provide the largest stability region encompassing that
obtained the methodology in Coutinho et al. [11].

Fig. 7 presents state trajectories and the control input sequence
for b = 4.800. Notice that for this value of b, no feasible solution is
found for the other stabilization conditions as described in Table 3.

The control gains obtained for b = 4.800 using Corollary 3 are:

Gy = 18.6161, G, =1.8040, G;=18.6133, G,=1.8018.
Ky =[-1.7773 -10.1322]. K,=[-1.3793 10.1322].
K= [—2.5799 —10.1322], Ky = [—2.1837 10.1322].
K = [0.1423 —3.7850], K = [—0.2566 —3_3862],
K;=[0.1384 -3.7844]. K, =[-0.2602 -3.3857].

From these results, it is possible to conclude that incorporating
the vector of nonlinearities into the control law can provide con-
siderably less conservative results in comparison with controllers
that use only the information on the system state vector. Further-
more, it is worth registering that we notice that the use of linear
annihilators also contributed significantly to reduce conservative-
ness.

7. Conclusion

This paper has proposed new conditions to compute gain-
scheduled SF and SOF controllers with a DoA estimation for ratio-
nal nonlinear discrete-time systems subject to time-varying param-
eters. The method builds up on DARs of the system dynamics and
parameter-dependent Lyapunov functions, leading to convex opti-
mization problems in terms of LMIs with a linear search parame-
ter. Regarding SF control, a novel condition was presented where
the system’s nonlinearities are taken into account in the control
law, showing favorable results compared to other approaches in
the literature. Furthermore, a new solution for SOF control, not

0.8F
306!
=
°
04"
o
(@]

0.2}

0 L I I
0 5 10 15

Sample

(b)

Fig. 7. Time series of the states trajectories and the control input sequence of the closed-loop system with the controller designed using Corollary 3 for b = 4.800.

10
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explored in the context of DARs for discrete-time systems, was
provided. The proposed SOF control design condition requires nei-
ther matrix-rank constraints nor iterative algorithms. In addition, it
can be applied to rational nonlinear systems with nonlinear and/or
parameter-dependent output matrix. Three numerical examples il-
lustrated the effectiveness and advantages of the proposed method.
For future research, we are particularly interested in exploring the
use of polynomial Lyapunov functions aiming to improve our re-
sults.
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Appendix A. Linear annihilator

The matrix Rx(x;) : R™ — R"*™ s a linear annihilator of state
vector x;, if Ry(x,)x, =0 and Ry (x;) is linear with respect to x.
Note that there is no single annihilator to a given system. In this
paper we will use the following annihilator proposed by Trofino
and Dezuo [45], that takes into account all possible product pairs
X(i)kx(j)kv Vl,] € Inx and i # ]

Dy (%) O1(xk)

Ry (%) = : : , with (A1)
Dy 1) On1(xp)
Oi(xk) = —X(kdn,—ir 1€ Tnc1,
D1 (%) =[xk X(nx)k]T’

X(i+1)k (A.2)

P00 = | 0 4o ez

X(mk

and the number of rows ng = 27;;1 J.

Appendix B. LMI relaxation

In Theorems 1 and 2, it is supposed that inequalities (10) and
(17) are dependent on (X, 8y, 8,.1), Eq. (12) is dependent on
(X 8y, and inequalities (11), (18), and (19) are dependent on (Jy).
Thus, the sufficient conditions provided by these inequalities are
modeled through a multi-simplex framework, i.e., the feasibility
problem is of infinite dimension, which is not computationally
tractable, and some underlying structure should be imposed on the
associated matrices to numerically solve the problem. In this sense,
a finite set of LMIs in terms of the vertices of the polytopes X and
A can be obtained, as follows.

Lemma 2. Suppose \Dl'},m with i,jeZy, and [, m,n € Iy,, are ma-

trices of appropriate dimensions, such that

Ny Ny N; N5 Ns
_ n
W (X O, Sper) = Z Z Z Z Z Q%1 00X i 8 1) 8 e X i1 \Ijijlm
i=1 j=1 I=1 m=1n=1

< 0. (B.1)

1
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If the following LMIs hold for all i, j € Iy, and I, m,n € Iy,
Wi <0, i=j I=m,
\I/,-'}” + \IJ?,-” <0,
Wi+ Wi <0,
 + v

iilm iim
jilm

i<j l=m,
i=j l<m,
+

Jjim

wh o4+ Wi

ijlm ijm

then inequality (B.1) is satisfied.

<0, i<, l<m, (B.2)

Proof. The hypothetical matrix in (B.1) can be rewritten as

N5 Ny N;

2 2 n
WX 8 Ben) = Do D Do o as Wil

n=1 i=1 I=1
N; Ne-1 Ne Ns

+ Z Z Z Za"(i)ka"(j)kag(,)kaﬁ(mm (\Ijit}ll + \I/ijli”)

n=1 i=1 j=i+1 I=1
N5 Ny Ns—1 Nj

+ Z Z Z Z a’%(!)ka‘s(l)kaa(m)kas(n)kﬂ (\Ijirillm + \Ijirz}ml)

n=1i=1 I=1 m=I+1
Ns Ny—1 Ny Ns;—1 Ny

+ Z Z Z Z Z ax(i)kaxﬁ)ka‘s(l)kaa(m)ka‘s(n)kﬂ (lpi]}lm + \pir}ml

n=1 i=1 j=i+1 I=1 m=I+1
+"pji'lilm + \Ijjniml)‘
Since py 2 0, if (B.2) are satisfied, then condition (B.1) is
guaranteed.

Example 5. Let consider a system with Ny=2 and Nj=2. By
Lemma 2, condition (B.1) is ensured if
\I’llm <0, ‘1’11122 <0, \I’zlzn <0, kI’21222 <0,
‘1’12111 <0, ‘1’12122 <0, LI’22211 <0, ‘1122222 <0,
Wi + Wiy <0, Winy + a5 < 0, Wiy
+ W5 <0, Wiy, + ¥y <0,
Wiy + Wiy <0, Wopp + Wopyy <0, Wiy,
+ Wiy <0, Wiy + W3y <0,
Yo+ Wainp + Winy + W35 <0,
+ W5 + Wiy + Wiy <0,

2
\Ij1212

resulting in 18 LMIs to be solved.

Lemma 2 can be used to treat computationally inequalities
(10) and (17). Finally, considering the polytopic description of ma-
trices P(8y), G(X, 8), and F(§;) in (11) and (18), (12), and (19) it
is possible to obtain the finite-dimensional LMIs, respectively

1 *
[ap PJZO’ et Lo >
Gl +Gy>0, icTy. ley, (B4)
FF+F>0, lely,. (B.5)
O

It is worth mentioning that the proposed methodology to ob-
tain the LMI conditions can be easily adapted for robust con-
troller design, discussed in Section 5. In this scenario, considering
the proposed approach for SF control, we have the gain matrices
G(x) = L%, ax Gi and K(x) = % ey, K. On the other hand,
for the SOF control design, we only have to consider F and H as
constant matrices. Notice that, inequalities (10) and (17) continuo
to be dependent on (X, 8y, d;,1), and Lemma 2 can be applied in
a straightforward way for a control law that does not depend on

(3k)-
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Appendix C. List of control gains in Examples 1 and 2

The SOF controller gains for Example 1 are given by
F =9.8265, FE =11.8209, H;=11.2750, H, =5.6487.

Thus, we have the gain matrices

Nj Nj
F((Sk) = Z()[(;mkﬁ and H((Sk) = ZO{g(”kH’, N5 =2.
=1 =1

The normalized vector o5, can be obtained using the following
polytopic decomposition

T
a5, = [Bs, ok B,k
with

Sk — Sk
Bs, ik = =————

_ Sk —Sa
8(1)]{ _é(l)k

ﬂ& )k

8(1)k _é(l)k

where 3(1),( and § ) are the maximum and minimum values of

8 1)k respectively.
For Example 2,

Corollary 1 are:

the SF controller gains obtained using

G =0.0377, G, =0.0297, G3=0.0375, G4=0.0300.

K = [720.6417 —-50.4402 -15.1305 516344 0 O O],
K = [717‘3959 -56.6913 2.2497 578815 0 O 0],

K3 = [719.9731 —-57.0337 -8.0197 552980 0 O 0],
Ky = [716.9967 —50.4726 —4.6552 54.0447 0 O 0].

The gain matrices G(x;) and K(x,) are given by

Ny Ny
G(Xk) = Zotx(,.)kG,» and K(Xk) = Zax(i)kKi, NX =4.
i=1 i=1

Similar to the previous case, the normalized vector ay, can be
obtained using the following polytopic decomposition

T
ay = [BoarBok  Bu@iBomk  BuanBoak  BuiBuok]

with

X(sk*xsk Xk — X(s)k
:Bxs(l)k = Ok Tk ,BXS(z)k = 7(), S € Iy,.

R(s)k - &(s)k ' R(s)k - K(s)k

where X5, and X, are the maximum and minimum values of
X(s)l» TESpectively.
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