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a b s t r a c t 

The design of State Feedback (SF) and Static Output Feedback (SOF) controllers for nonlinear discrete- 

time systems subject to time-varying parameters is discussed in the context of Difference-Algebraic Rep- 

resentations (DAR) and parameter-dependent Lyapunov functions applied to obtain convex conditions in 

the form of Linear Matrix Inequalities (LMI). The proposed conditions guarantee the system robust sta- 

bilization and provide an estimate of the Domain-of-Attraction (DoA). Firstly, a novel strategy for gain- 

scheduled SF control is proposed incorporating information on the system’s nonlinearities to compute the 

control action. Secondly, a new gain-scheduled SOF control design solution is derived, without structural 

constraints imposed on the output matrix and without making use of iterative algorithms, unlike most 

approaches in the current literature. Finally, numerical examples illustrate the proposed methodology’s 

potential. 
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. Introduction 

Most dynamical systems in real-world applications present 

onlinear behavior, such as electromechanical [42,47] , electronic 

37] , chemical [16] , and biological [6] systems. Generally, the sta- 

ility analysis and the control design for nonlinear systems are 

ery challenging. However, considering the nonlinear characteris- 

ics of certain systems is essential to model nonlinear phenomena 

nd ensure the validity of results beyond the vicinity of equilib- 

ium points [18] . In addition, the use of nonlinear control strategies 

an be important to achieve better performance for the closed-loop 

ontrol system than what can be achieved by using linear tech- 

iques [41] . 

As a consequence of the benefits of addressing nonlinear as- 

ects in control systems, the development of analysis and synthesis 

onditions for nonlinear systems has received a lot of attention in 

he last decades. The majority of recently proposed approaches use 

inear Matrix Inequality (LMI)-based tools [39] for stability analysis 

nd control design based on Lyapunov Stability Theory [18] . In this 
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ontext, an approach widely explored by researchers is to consider 

 compact region in the state space in which an estimated Domain 

f Attraction (DoA) can be determined, in which the asymptotic 

tability of the system is guaranteed [1,2,4,10,23,26,33,34,43] . Since 

onstraints on system states usually have to be enforced in prac- 

ical applications due to physical limitations, these approaches are 

uite promising. In this investigation, we are particularly interested 

n the regional stabilization of a class of discrete-time nonlinear 

ystems subject to time-varying parameters. 

The class of systems considered in this research covers all sys- 

ems that can be modeled as a Difference-Algebraic Representation 

DAR) [9] , also called Recursive-Algebraic Representation (RAR) 

4,23] – the discrete-time counterpart of the Differential-Algebraic 

epresentations [8,43,44] . This representation allows us to system- 

tically account for rational nonlinearities. The motivation to inves- 

igate rational systems is their use to model a wide range of phys- 

cal phenomena by relying on first principles or through the ap- 

lication of nonlinear system identification and realization theory 

40] . Nevertheless, the use of DARs was not extensively explored in 

ontrol theory for discrete-time systems. Contributions in this field 

nclude stability analysis [4,24] , State Feedback (SF) control design 

5,35] , and filter design [9] . 

In the context of stability analysis, less conservative results 

ere obtained by searching for polynomial and rational Lyapunov 

andidate functions [4] . However, due to inherent difficulties in the 
rved. 
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evelopment of synthesis conditions, approaches to DAR initially 

sed quadratic Lyapunov functions, and linear SF controllers to ro- 

ust stabilization and DoA estimation [23] . Recently improvements 

ere reported in Reis et al. [35] based on the use of parameter- 

ependent Lyapunov functions and gain-scheduled SF controllers. 

ne of the purposes of this paper is to present further develop- 

ents upon these previous works, reducing the conservativeness 

y incorporating information about the system’s nonlinearities in 

he control law. 

Another purpose of this investigation is to address the design 

f Static Output Feedback (SOF) controllers, a challenging stabi- 

ization problem not well addressed in the context of DARs. The 

OF control design problem has received a lot of attention in the 

ast years because it is simple to be implemented in practical sit- 

ations where only partial state information is available in real- 

ime [21,30] . However, the design of SOF control schemes is con- 

idered to be harder to solve due to its nonconvex characteriza- 

ion, even in the context of linear systems [31,32] . Most results 

re restrictive and conservative. For instance, some methodologies 

equire a constant output matrix or particular similarity trans- 

ormations [12,14] . Besides that, it is possible to find in the lit- 

rature methodologies based on iterative algorithms or stabiliza- 

ion conditions that rely on the scalar search of different parame- 

ers, which increases the computational effort [20,36,46] . There are 

lso two-step approaches, where the first step consists of search- 

ng for an SF controller and then the SOF control is obtained 

rom the initial results [8,13] . More recently, in Peixoto et al. [27] ,

8 ] it was proposed an alternative one-step approach to compute 

cheduled output-feedback control gains for discrete-time nonlin- 

ar parameter-varying systems with time-varying delay in the state 

nd also the case for fuzzy systems [29] . 

Based on the previous discussions, this paper proposes novel 

tabilization conditions to design gain-scheduled SF and SOF con- 

rollers for rational nonlinear discrete-time systems with time- 

arying parameters described in a DAR form. The proposed con- 

itions are presented in the form of LMIs obtained by considering 

arameter-dependent Lyapunov functions and they provide an es- 

imate of the closed-loop DoA. Our methodology consists in one- 

tep approach such that no iterative algorithms are required, and 

uxiliary decision variables are introduced only aiming at less con- 

ervative results. More specifically, our main contributions can be 

ummarized as follows: 

• A novel sufficient condition to design nonlinear gain-scheduled 

SF controllers for regional stabilization of discrete-time nonlin- 

ear systems is provided. Compared to other proposed method- 

ologies for DARs in a similar context [23,35] , the novelty of 

this approach is the use of information on the system’s nonlin- 

earities to synthesize the control law. The proposed technique 

is relatively simple for control design and implementation and 

can drastically reduce the conservativeness of the results, as il- 

lustrated by numerical examples. 

• A new sufficient condition for regional stabilization of discrete- 

time nonlinear systems by gain-scheduled SOF controllers, al- 

beit not explored in the context of DARs for discrete-time non- 

linear systems, is presented. In this case, previous works in 

the context of Linear Parameter Varying (LPV) Systems have in- 

spired our research, as for instance [30,31] , in which no congru- 

ence transformations are necessary. However, we present a new 

methodology in which the control approach can be applied to 

nonlinear systems with parameter-dependent and/or nonlinear 

output matrix. 

Hereafter, the paper is organized as follows. Section 2 presents 

he problem formulation. The conditions to synthesize nonlinear 

ain-scheduled SF controllers are given in Section 3 . In Section 4 , 

he gain-scheduled SOF control design methodology is presented. 
2

ection 5 brings important aspects to the implementation of the 

roposed control laws in specific situations. Numerical examples 

re provided in Section 6 . Finally, concluding remarks are given in 

ection 7 . 

Notation: R 

n is the n -dimensional Euclidean space, R 

m ×n is the 

et of m × n real matrices, I n is the n × n identity matrix and

iag { . . . } stands for a block-diagonal matrix. For a real matrix 

, M 

T denotes its transpose and M > 0 (M ≥ 0) means that M

s symmetric positive definite (semi-positive definite) and M (i ) is 

he i th row. For a symmetric block matrix, the symbol � stands 

or the transpose of the blocks outside the main diagonal block. 

et I n = [1 , n ] ⊂ N , n ∈ N . For two sets X ⊂ R 

n x and � ⊂ R 

n δ ,

he notation X × � ⊂ R 

n x + n δ is the cartesian product of X and 

. �1 := 

{
αp k 

∈ R 

N : 
∑ N 

v =1 αp ( v ) k 
= 1 , αp ( v ) k 

≥ 0 
}

represents the 

nitary simplex, where p represents an index used to distinguish 

ifferent polytopes, N is the number of vertices and αp ( v ) k 
is the 

 

th entry in the vector at time k . Finally, the following notation is 

dopted to represent matrices of affine functions of (x k , δk ) : 

(x k , δk ) = 

N x ∑ 

i =1 

N δ∑ 

l=1 

αx (i ) k 
αδ(l) k 

M il . 

here N x and N δ denote the number of vertices of the x k and δk 

olytopes, respectively. 

. Problem statement 

Consider the following class of discrete-time nonlinear systems: 

 k +1 = f (x k , δk ) + g(x k , δk ) u k , 

y k = h (x k , δk ) = C(x k , δk ) x k , (1) 

here x k ∈ X ⊆ R 

n x is the state vector of the system, δk ∈ � ⊆ R 

n δ

s a time-varying parameter vector, which is available online to the 

ontroller, u k ∈ R 

n u is the control input, y k ∈ R 

n y is the measure-

ent output, and C(x k , δk ) ∈ R 

n y ×n x is the output matrix. 

In this research, we assume that functions f (·) : R 

n x × R 

n δ → 

 

n x (with f (0 , δk ) = 0 ) g(·) : R 

n x × R 

n δ → R 

n x ×n u , and h (·) : R 

n x ×
 

n δ → R 

n y are rational functions well-posed on X × �. This as- 

umption regards the class of rational systems and guarantees the 

xistence and uniqueness of the solutions of the difference equa- 

ion in a neighborhood X × � of the equilibrium point f (0 , δk ) = 

 , ∀ δk ∈ �. 

It is well known that a Difference-Algebraic Representation 

DAR) can represent the class of rational systems in the discrete- 

ime domain [7,8,24,25,44] . Thus, system (1) can be recast as a DAR 

iven by 

 k +1 = A 1 (x k , δk ) x k + A 2 (x k , δk ) πk + A 3 (x k , δk ) u k , 

0 = �1 (x k , δk ) x k + �2 (x k , δk ) πk + �3 (x k , δk ) u k , 

y k = C 1 (x k , δk ) x k + C 2 (x k , δk ) πk , (2) 

here πk := π(x k , δk , u k ) ∈ R 

n π is an auxiliary vector of non-

inear functions with respect to (x k , δk ) and affine with respect 

o (u k ) . The matrices A 1 (x k , δk ) ∈ R 

n x ×n x , A 2 (x k , δk ) ∈ R 

n x ×n π ,

 3 (x k , δk ) ∈ R 

n x ×n u , �1 (x k , δk ) ∈ R 

n π ×n x , �2 (x k , δk ) ∈ R 

n π ×n π ,

3 (x k , δk ) ∈ R 

n π ×n u , C 1 (x k , δk ) ∈ R 

n y ×n x , and C 2 (x k , δk ) ∈ R 

n y ×n π

re affine functions of (x k , δk ) , such that �2 (x k , δk ) is a square

ull-rank matrix for all (x k , δk ) ∈ X × �. 

The correctness of the DAR could be verified by replacing the 

onlinearity vector πk given by the null algebraic equation in 

2) with the corresponding expression bellow so that (1) is ob- 

ained. 

k = −�−1 
2 (x k , δk ) [ �1 (x k , δk ) x k + �3 (x k , δk ) u k ] . (3) 
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It is important to point out that the decomposition of the non- 

inear system in a DAR form is not unique, which can lead to con- 

ervative results. In this paper, to reduce this potential conserva- 

iveness, we use the concept of linear annihilator , represented in 

his paper as ℵ x (x k ) ∈ R 

n q ×n x (see Appendix A ), and originally pro-

osed in Trofino and Dezuo [45] for DAR models. 

More often than not, e.g. due to physical limitations or associ- 

ted with a validity region for the system mathematical model, one 

ust take into consideration a domain of operation for the system 

tates. In this context, in this investigation the state trajectories of 

ystem (2) will be considered to evolve in the following polyhedral 

et (which will be turned into a positively invariant set by control 

esign): 

 := 

{
x k ∈ R 

n x : a T p x k ≤ 1 , p ∈ I n e 
}
, (4) 

here a p ∈ R 

n x is a constant n x -dimensional vector of parameters, 

nd n e is the number of hyperplanes that characterize the re- 

ion X . 

This research is concerned with developing LMI-based condi- 

ions that provide the stabilization of system (1) using the repre- 

entation in (2) . To achieve the main purpose of this investigation, 

he following Lyapunov function candidate is considered: 

 (x k , δk ) = x T k P (δk ) x k , P (δk ) = 

N δ∑ 

l=1 

αδ(l) k 
P l , P l = P T l > 0 . (5)

The level set associated with the function (5) is defined by 

 DoA := { x k ∈ R 

n x : V ( x k , δk ) ≤ 1 , ∀ δk ∈ �} . (6) 

emma 1 (adapted from Jungers and Castelan [17] ) . The level set 

6) associated with the function (5) verifies that 

 DoA = 

⋂ 

l∈ { 1 , ... ,N δ} 
E ( P l , 1 ) , (7) 

with E ( P l , 1 ) := 

{
x k ∈ R 

n x : x T 
k 

P l x k ≤ 1 
}

. 

roof. x k ∈ L DoA ⇔ ∀ δk ∈ �, V (x k , δk ) < 1 ⇔ x k ∈ 

 

δk ∈ � E ( P (δk ) , 1 ) . Moreover, ⋂ 

k ∈ �
E ( P (δk ) , 1 ) ⊂

⋂ 

l∈ { 1 , ... ,N δ} 
E ( P l , 1 ) 

To prove that ⋂ 

∈ { 1 , ... ,N δ} 
E ( P l , 1 ) ⊂

⋂ 

δk ∈ �
E ( P (δk ) , 1 ) , 

onsider x k ∈ 

⋂ 

l∈ { 1 , ... ,N δ} E ( P l , 1 ) , then x T 
k 

P l x k < 1 , l ∈ I N δ . 

Since 
∑ N δ

l=1 
αδ(l) k 

= 1 , the above inequality can be recast as 

 

T 
k 

( 

N δ∑ 

l=1 

αδ(l) k 
P l 

) 

x k < 1 , l ∈ I N δ . 

hus, 

 

T 
k P (δk ) x k < 1 , δk ∈ �. 

his implies that x k ∈ E ( P (δk ) , 1 ) , or x k ∈ 

⋂ 

δk ∈ � E ( P (δk ) , 1 ) . �

If �V = V (x k +1 , δk +1 ) − V (x k , δk ) < 0 , ∀ x k ∈ L DoA , then (5) is

aid to be a Lyapunov function and L DoA is a contractive invari- 

nt set with respect to the closed-loop system, which ensures that 

or x 0 ∈ L DoA , x k → 0 , when k → ∞ . 

By considering system (1) in a DAR form (2) , this work is 

articularly concerned with proposing sufficient conditions to de- 

ign state and static output-feedback controllers such that L DoA ⊂
 , ∀ δk ∈ �, is an invariant set with respect to the closed-loop, and

 is as large as possible. 
DoA 

3 
. State feedback control 

This section presents novel stabilization conditions for discrete- 

ime nonlinear systems, considering all aspects stated previously. 

he novelty of the proposed conditions is related to the fact that 

he information about the nonlinearity vector πk is incorporated in 

he control law. Thus, we have 

 k = G 

−1 (x k , δk ) K(x k , δk ) ξk , (8) 

ith K(x k , δk ) ∈ R 

n u ×(n x + n π ) and G (x k , δk ) ∈ R 

n u ×n u matrices of

ffine functions with respect to (x k , δk ) , to be determined, and 

k = 

[
x T 

k 
π T 

k 

]T 
. 

emark 1. Notice that, we consider both the system model and 

he control input represented from the same basis function πk . 

owever, the elements of πk that do not appear in the system rep- 

esentation can be removed by nulling the respective columns of 

he DAR matrix A 2 (x k , δk ) . On the other hand, it is possible to re-

ove the elements of πk that we do not want at the control input 

y nulling the respective columns of matrix K(x k , δk ) in the con- 

rol input (8) . For instance, the proposed control law includes the 

articular case 

 k = G 

−1 (x k , δk ) ̄K (x k , δk ) x k , (9) 

y considering K(x k , δk ) = 

[
K̄ (x k , δk ) 0 

]
in (8) , with K̄ (x k , δk ) ∈

 

n u ×n x . 

In the sequel, sufficient conditions to compute the SF control 

atrices that stabilize the nonlinear system (1) are presented. 

heorem 1. Consider the nonlinear system (1) and its DAR (2) . Let 

be a given positive scalar. If there exist matrices P (δk ) = P T (δk ) >

 , P (δk ) ∈ R 

n x ×n x , L (x k , δk ) ∈ R 

(2 n x + n u + n π ) ×(n x + n π + n q ) , G ( x k , δk ) ∈
 

n u ×n u , and K(x k , δk ) ∈ R 

n u ×(n x + n π ) , such that the following in- 

qualities hold 

1 (x k , δk , δk +1 ) + L (x k , δk )�2 (x k , δk ) + �T 
2 (x k , δk ) L 

T (x k , δk ) < 0 , 

(10) 

1 � 

a p P (δk ) 

]
≥ 0 , p ∈ I n e , (11) 

nd 

 

T (x k , δk ) + G (x k , δk ) > 0 , (12) 

here 

�1 = 

[ 

P (δk +1 ) � � 

εK 

T (x k , δk ) A 

T 
3 (x k , δk ) −P a (δk ) � 

−εG 

T (x k , δk ) A 

T 
3 (x k , δk ) 0 0 

] 

, 

 a (δk ) = 

[
P (δk ) � 

0 0 

]
, 

2 = 

[ −I A 1 (x k , δk ) A 2 (x k , δk ) A 3 (x k , δk ) 
0 �1 (x k , δk ) �2 (x k , δk ) �3 (x k , δk ) 
0 ℵ x (x k ) 0 0 

] 

, 

hen there exist a Lyapunov function (5) and a controller (8) such 

hat, ∀ x 0 inside L DoA and δk ∈ �, the trajectory of x k converge to the

rigin when k → ∞ . 

roof. Inequality (10) can be recast as 

1 + J�2 + �T 
2 J 

T 

 ︷︷ ︸ 
�1 

+ L �2 + �T 
2 L 

T < 0 , (13) 

ith �2 = 

[
0 G 

−1 (x k , δk ) K(x k , δk ) −I 
]
, 

1 = 

[ 

P (δk +1 ) � � 

0 −P a (δk ) � 

0 0 0 

] 

, and J = 

[ 

εA 3 (x k , δk ) G (x k , δk ) 
0 

0 

] 

. 
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Defining ζ = 

[
x T 

k +1 
ξ T 

k 
u T 

k 

]T 
, one has that �2 ζ = 

 and �2 ζ = 0 . By pre- and post-multiplying (13) by ζ T and 

ts transpose, respectively, results in �V k = x T 
k +1 

P (δk +1 ) x k +1 −
 

T 
k 

P (δk ) x k < 0 . This proves that if the condition (10) is feasible,

hen V (x k , δk ) is a Lyapunov function and the controller (8) en-

ures that the origin of the closed-loop system is asymptotically 

table. 

Multiplying (11) with 

[
1 −x T 

k 

]
on the left and its transpose 

n the right, yields 

 − x T k a p − a T p x k + x T k P (δk ) x k ≥ 0 . 

ince x T 
k 

P (δk ) x k ≤ 1 for all x ∈ L DoA , this inequality implies that

 

T 
p x k ≤ 1 . This guarantees the inclusion L DoA ⊆ X . 

Finally, condition (12) ensures the existence of the inverse of 

atrix G (x k , δk ) , ∀ x k ∈ X and δk ∈ �, which is necessary to guar-

ntee the computation of the control law in (8) . �

An alternative to find the largest DoA is to consider the follow- 

ng subset of L DoA 

 ( Q, 1 ) ⊆
⋂ 

l∈ { 1 , ... ,N δ} 
E ( P l , 1 ) . (14) 

In the next Corollary, Theorem 1 can be used to maximize the 

stimated DoA from a Semidefinite Programming (SDP) problem 

ubjected to LMI conditions. 

orollary 1. Given a positive scalar ε > 0 . If there exist symmet- 

ic matrices Q ∈ R 

n x ×n x and P (δk ) > 0 , P (δk ) ∈ R 

n x ×n x , and any

atrices L (x k , δk ) ∈ R 

(2 n x + n u + n π ) ×(n x + n π + n q ) , G (x k , δk ) ∈ R 

n u ×n u , and

(x k , δk ) ∈ R 

n u ×(n x + n π ) , satisfying the following optimization problem 

or all δk ∈ � and x k ∈ X : 

min { trace (Q ) } 
subject to (10) –(12) , and Q − P (δk ) > 0 , 

(15) 

hen the SF controller (8) asymptotically stabilizes the closed-loop sys- 

em, composed to (1) and (8) , around the origin, and E ( Q, 1 ) ⊆ L DoA 

s an estimate of the DoA. 

roof. The additional inequality in (15) ensures that E ( Q, 1 ) ⊆
 DoA , which is defined in (7) , and the rest of the proof follows in a

traightforward way as in the proof of Theorem 1 . �

. Static output feedback control 

Section 3 presented the conditions to design an SF controller for 

egional stabilization of discrete-time nonlinear systems when full 

tate information is available. In this section, considering practical 

pplications in which only the system output is measurable in real- 

ime, our goal is to design an SOF controller in the form 

 k = F −1 (δk ) H(δk ) y k , (16) 

ith H(δk ) ∈ R 

n u ×n y and F (δk ) ∈ R 

n u ×n u matrices of affine func- 

ions with respect to (δk ) , to be determined. 

emark 2. Since SOF controllers are an alternative more explored 

n practical situations where the complete state information is 

ot available for real-time control implementation, the information 

bout the system states vector is not taken into account in the gain 

atrices F (·) and H(·) , which are only dependent on parameters 

δk ) . 

Theorem 2 in the sequel presents a new SOF control design for 

he nonlinear system (1) . 

heorem 2. Consider the nonlinear system (1) and its DAR (2) . Let 

be a given positive scalar. If there exist matrices P (δk ) = P T (δk ) >

 , P (δ ) ∈ R 

n x ×n x , S(x , δ ) ∈ R 

(2 n x + n y + n u + n π ) ×(n x + n y + n π + n q ) , F (δ ) ∈
k k k k 

4

 

n u ×n u , and H(δk ) ∈ R 

n u ×n y , such that the following inequalities hold 

1 (x k , δk , δk +1 ) + S(x k , δk )ϒ2 (x k , δk ) + ϒT 
2 (x k , δk ) S 

T (x k , δk ) < 0 , 

(17) 

1 � 

a p P (δk ) 

]
≥ 0 , p ∈ I n e , (18) 

nd 

 

T (δk ) + F (δk ) > 0 , (19) 

here 

1 = 

⎡ 

⎢ ⎢ ⎣ 

−P(δk ) � � � � 

0 P(δk +1 ) � � � 

εH 

T (δk ) A 
T 
3 (x k , δk ) H 

T (δk ) A 
T 
3 (x k , δk ) 0 � � 

−εF T (δk ) A 
T 
3 (x k , δk ) −F T (δk ) A 

T 
3 (x k , δk ) εH(δk ) A 44 � 

0 0 A 53 A 54 0 

⎤ 

⎥ ⎥ ⎦ 

, 

 44 = −εF (δk ) − εF T (δk ) , 

 53 = �3 (x k , δk ) H(δk ) , 

 54 = −�3 (x k , δk ) F (δk ) , 

2 = 

⎡ 

⎢ ⎣ 

A 1 (x k , δk ) −I 0 A 3 (x k , δk ) A 2 (x k , δk ) 
C 1 (x k , δk ) 0 −I 0 C 2 (x k , δk ) 
�1 (x k , δk ) 0 0 �3 (x k , δk ) �2 (x k , δk ) ℵ x (x k ) 0 0 0 0 

⎤ 

⎥ ⎦ 

, 

hen there exist a Lyapunov function (5) and a controller (16) such 

hat, ∀ x 0 inside L DoA and δk ∈ �, the trajectory of x k converge to the

rigin when k → ∞ . 

roof. Inequality (17) can be recast as 

1 + R �2 + �T 
2 R 

T + Sϒ2 + ϒT 
2 S 

T < 0 , 

here �2 = 

[
0 0 F −1 (δk ) H(δk ) −I 0 

]
, 

1 = 

⎡ 

⎢ ⎢ ⎣ 

−P (δk ) � � � � 

0 P (δk +1 ) � � � 

0 0 0 � � 

0 0 0 0 � 

0 0 0 0 0 

⎤ 

⎥ ⎥ ⎦ 

, and 

R = 

⎡ 

⎢ ⎢ ⎣ 

εA 3 (x k , δk ) F (δk ) 
A 3 (x k , δk ) F (δk ) 

0 

εF T (δk ) 
�3 (x k , δk ) F (δk ) 

⎤ 

⎥ ⎥ ⎦ 

. 

Defining ϑ = 

[
x T 

k 
x T 

k +1 
y T 

k 
u T 

k 
π T 

k 

]T 
, one has �2 ϑ = 

 and ϒ2 ϑ = 0 . Multiplying the latter inequality by ϑ 

T on the 

eft and its transpose on the right, yields �V k = x T 
k +1 

P (δk +1 ) x k +1 −
 

T 
k 

P (δk ) x k < 0 . Thus, if the condition (17) is feasible, then V (x k , δk )

s a Lyapunov function and the SOF controller (16) ensures that the 

rigin of the closed-loop system is asymptotically stable. 

Constraint (18) is obtained following the same steps in 

heorem 1 and condition (19) ensures the existence of the in- 

erse of matrix F (δk ) , ∀ δk ∈ �, which is necessary to guarantee 

he computation of the control law in (16) . �

Similarly to the previous results stated in Section 3 , the next 

orollary can be used in order to maximize the estimated DoA. 

orollary 2. Consider a given positive scalar ε > 0 . If there exist sym- 

etric matrices Q ∈ R 

n x ×n x and P (δk ) > 0 , P (δk ) ∈ R 

n x ×n x , and matri-

es S(x , δ ) ∈ R 

(2 n x + n y + n u + n π ) ×(n x + n y + n π + n q ) , F (δ ) ∈ R 

n u ×n u , and 
k k k 
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H(δk ) ∈ R 

n u ×n y satisfying the following optimization problem for 

ll δk ∈ � and x k ∈ X : 

min { trace (Q ) } 
subject to (17) –(19) , and Q − P (δk ) > 0 , 

(20) 

hen the SOF controller (16) asymptotically stabilizes the closed-loop 

ystem, composed to (1) and (16) , around the origin, and E ( Q, 1 ) ⊆
 DoA is an estimate of the DoA. 

roof. The additional inequality in (20) ensures that E ( Q, 1 ) ⊆
 DoA and the rest of the proof follows in a straightforward way as 

n the proof of Theorem 2 . �

emark 3. Notice that the proposed methodology can be applied 

o rational systems with nonlinear and/or parameter-dependent 

utput matrix. Besides that, no structural constraint is imposed on 

he output matrix, and the SOF control design problem is solved 

irectly, without the necessity to obtain an SF controller in the first 

tep or use iterative algorithms, unlike other literature approaches 

8,12–14,20,46] . It is worth emphasizing that the given scalar ε is 

ntroduced only to likely yield a less conservative result. 

emark 4. Toward developing the results from Theorems 1 and 2 , 

e decided to adopt a parameter-dependent Lyapunov function, 

iming to obtain LMI conditions which can provide less conser- 

ative results compared to the ones obtained by using standard 

uadratic Lyapunov functions. To potentially reduce the conser- 

atism, enhanced Lyapunov functions are usually employed for 

tability analysis. In the context of discrete-time nonlinear sys- 

ems described in a DAR form, to the best of the authors’ knowl- 

dge, only Coutinho and de Souza [4] had proposed analysis con- 

itions based on polynomial Lyapunov functions, but without pro- 

iding synthesis conditions due to its inherent difficulties. On the 

ther hand, in the literature, there are also methods using sum of 

quares (SOS) decomposition of the Lyapunov stability conditions 

hat can be cast as a semidefinite program (SDP) [3,38] , but this is

ot the aim in this work. 

. On the implementation of the control law 

The proposed approaches so far have considered, in the sys- 

em model, the presence of time-varying parameters ( δk ), which 

re supposed to be exactly known, and this information is used in 

he gain-scheduled control strategy, aiming to achieve less conser- 

ative results. 

In real-world applications, a more realistic situation is the case 

here the dynamical system presents physical parameters that are 

ot precisely known, i.e., the nonlinear system model includes un- 

ertain parameters whose bounds, in many cases, are known and 

an be taken into account in the stabilization conditions. In this 

ontext, the proposed control laws can be adapted to deal with 

he parametric uncertainties associated with unknown parameters. 

For SF robust control, Theorem 1 can be applied by considering 

he matrices G (·) and K(·) only affine with respect to states (x k ) .

n this case, if the nonlinearity vector, πk , depends on part of the 

arametric uncertainties, we must null the respective columns of 

atrix K(·) , as discussed in Remark 1 . For SOF robust control, it is

ossible to apply Theorem 2 , defining F and H as constant matri- 

es. 

Another situation that requires attention in practical applica- 

ions is when �3 (x k , δk )  = 0 , i.e., vector πk is dependent on (u k ) .

oncerning the design of SF controllers, as for the case of πk de- 

endent on uncertain parameters, it is possible to deal with this 

roblem by nulling the respective columns of matrix K(·) and solv- 

ng the stabilization conditions in Theorem 1 . Alternatively, the fol- 

owing Corollary can be used to synthesize an SF controller incor- 
5 
orating the complete information of vector πk , in which the final 

mplementation of the control law is guaranteed. 

orollary 3. Consider a given positive scalar ε > 0 . If there exist sym- 

etric matrices Q ∈ R 

n x ×n x and P (δk ) > 0 , P (δk ) ∈ R 

n x ×n x , and any

atrices L (x k , δk ) ∈ R 

(2 n x + n u + n π ) ×(n x + n π + n q ) , G (x k , δk ) ∈ R 

n u ×n u , and

(x k , δk ) = 

[
K̄ (x k , δk ) ˆ K (x k , δk ) 

]
, K̄ (x k , δk ) ∈ R 

n u ×n x , ˆ K (x k , δk ) ∈ 

 

n u ×n π satisfying the following optimization problem for all δk ∈ �

nd x k ∈ X : 

min { trace (Q ) } 
subject to (10) , (11) , Q − P (δk ) > 0 , and 

(21) 

G 

T (x k , δk ) + G (x k , δk ) ˆ K (x k , δk ) + �T 
3 (x k , δk ) 

ˆ K 

T (x k , δk ) + �3 (x k , δk ) −(�T 
2 (x k , δk ) + �2 (x k , δk )) 

]
> 0 , 

(22) 

hen the SF controller (8) asymptotically stabilizes the closed-loop sys- 

em comprised by (1) and (8) , around the origin, and E ( Q, 1 ) ⊆ L DoA 

s an estimate of the DoA. 

roof. Note that, from (8) , we have 

 k = G 

−1 (x k , δk ) 
[
K̄ (x k , δk ) x k + 

ˆ K (x k , δk ) πk 

]
, 

here K(x k , δk ) = 

[
K̄ (x k , δk ) ˆ K (x k , δk ) 

]
in (8) . At the same 

ime, from (3) , if �3 (x k , δk )  = 0 and using the assumption that

 �−1 
2 

(x k , δk ) , one has that (dependency with (x k , δk ) was dropped

or clarity purposes) 

 k = G 

−1 
[
K̄ x k − ˆ K �−1 

2 ( �1 x k + �3 u k ) 
]
, 

hich can be rewritten as 

G + 

ˆ K �−1 
2 �3 

]
u k = K̄ x k − ˆ K �−1 

2 �1 x k . 

herefore, the final implementation of the control law (8) is given 

y 

 k = 

[
G + 

ˆ K �−1 
2 �3 

]−1 [
K̄ − ˆ K �−1 

2 �1 

]
x k , (23) 

s long as the matrix M(x k , δk ) = 

[
G + 

ˆ K �−1 
2 

�3 

]
is invertible. 

If �3 ≡ 0 or ˆ K ≡ 0 , M(x k , δk ) is nonsingular from the satisfac- 

ion of (12) in Theorem 1 . On the other hand, if �3  = 0 and 

ˆ K  = 0 ,

rom (22) one has 

T (x k , δk ) + �(x k , δk ) > 0 , �(x k , δk ) = 

[
G 

ˆ K 

�3 −�2 

]
From the feasibility of the above inequality, �(x k , δk ) must be 

nvertible. Notice that matrix �(x k , δk ) can be recast as 

(x k , δk ) = 

[
I − ˆ K �−1 

2 

0 I 

][
G + 

ˆ K �−1 
2 

�3 0 

0 −�2 

]
[

I 0 

−�−1 
2 

�3 I 

]
. 

hus, det (�(x k , δk )) = det (G + 

ˆ K �−1 
2 

�3 ) det (−�2 ) = det (M) det 

−�2 ) . 

Therefore, if condition (22) is satisfied, then det (�(x k , δk ))  = 

 and M(x k , δk ) is invertible. The rest of the proof follows 

n a straightforward way as in the proofs of Theorem 1 and 

orollary 1 . �

emark 5. Notice that condition (22) in Corollary 3 requires the 

dditional restriction that �T 
2 
(x k , δk ) + �2 (x k , δk ) must be a nega-

ive definite matrix. In the cases where matrix �2 (·) has a definite 

ign, the fact that �2 (·) must be negative is not restrictive, as it is 

ossible to change the sign of this matrix in the definition of the 

lgebraic equation of the DAR, without loss of generality. If �2 (·) 
as no definite sign but is constant, an alternative to guarantee 
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Table 1 

Largest estimated DoA for system (24) , from Corollary 2 . 

Lyapunov function Polytopic region (X ) Area of the estimated DoA 

quadratic | x (1) k | ≤ 0 . 42 , | x (2) k | ≤ 0 . 21 0.2304 

parameter-dependent | x (1) k | ≤ 0 . 62 , | x (2) k | ≤ 0 . 32 0.4836 
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hat the additional constraint in (22) holds is obtained multiplying 

he DAR algebraic equation on the left by −�T 
2 (·) , as this results in

 new negative definite �2 (·) matrix. On the other hand, the cases 

here �2 (·) is affine with respect to (x k , δk ) without a definite 

ign are more complex and should be analyzed carefully depend- 

ng on the problem. Despite this fact, considerably less conserva- 

ive results can be obtained using the complete information of the 

onlinearity vector (πk ) , as shown in Example 4 . 

. Numerical examples 

In this section, numerical examples are presented to demon- 

trate the effectiveness of the proposed methodology. The stabi- 

ization conditions were presented in an infinite-dimensional form, 

hich is not computationally tractable. Thus, Appendix B gives 

he LMI relaxation employed to convert the conditions proposed 

n Theorems 1 and 2 into finite sets of LMIs, which were imple- 

ented in MATLAB (R2019) using the parser Yalmip and the solver 

osek. 

xample 1. Consider the following rational nonlinear system with 

 time-varying parameter: 

 (1) k +1 = (1 − δ(1) k ) x (2) k + 

x 2 
(1) k 

1 + x 2 
(1) k 

−
δ(1) k x 

4 
(1) k 

1 + x 2 
(1) k 

, 

 (2) k +1 = −x (1) k + x (2) k + 0 . 5 

δ(1) k x (1) k 

1 + x 2 
(1) k 

+ (1 + 2 δ(1) k ) u k , 

y k = x (1) k + 2 δ(1) k x (2) k + 

x 4 
(1) k 

1 + x 2 
(1) k 

. (24) 

ith a corresponding DAR such that 

π = 

[
x 4 
(1) k 

1 + x 2 
(1) k 

x 3 
(1) k 

1 + x 2 
(1) k 

x 2 
(1) k 

1 + x 2 
(1) k 

x (1) k 

1 + x 2 
(1) k 

]T 

, 

C 1 = 

[
1 2 δ(1) k 

]
, C 2 = 

[
1 0 0 0 

]
, 

A 1 = 

[
0 1 − δ(1) k 

−1 1 

]
, 

A 2 = 

[
−δ(1) k 0 1 0 

0 0 0 0 . 5 δ(1) k 

]
, A 3 = 

[
0 

1 + 2 δ(1) k 

]
, 

1 = 

⎡ 

⎢ ⎣ 

0 0 

0 0 

0 0 

1 0 

⎤ 

⎥ ⎦ 

, �2 = 

⎡ 

⎢ ⎣ 

−1 x (1) k 0 0 

0 −1 x (1) k 0 

0 0 −1 x (1) k 

0 0 −x (1) k −1 

⎤ 

⎥ ⎦ 

, 

3 = 

⎡ 

⎢ ⎣ 

0 

0 

0 

0 

⎤ 

⎥ ⎦ 

. 

Defining � := 

{
δk ∈ R : | δ(1) k | ≤ 0 . 13 

}
, the optimization prob- 

em stated in Corollary 2 was solved to design an SOF controller 

iming to obtain the largest admissible polytope in the state space 

nd the largest estimated DoA, such that system (24) can be sta- 

ilized. The results obtained from the proposed approach by con- 

idering a parameter-dependent Lyapunov function and a standard 
6 
uadratic Lyapunov function are summarized in Table 1 . For bet- 

er clarification, the SOF controller gain matrices are described in 

ppendix C . 

The less conservative result was obtained by defining ε = 1 ×
0 −8 and X := 

{
x k ∈ R 

2 : | x (1) k | ≤ 0 . 62 and | x (2) k | ≤ 0 . 32 
}

, to solve 

he optimization problem (20) , considering a parameter-dependent 

yapunov function, which results in an estimated DoA with area 

qual to 0.4836. In this case, the minimum value for the objec- 

ive function related to the area of the estimated DoA is trace (Q ) = 

8 . 7632 . 

The obtained matrices P l are given by: 

 1 = 

[
3 . 0374 −1 . 5727 

−1 . 5727 10 . 5799 

]
, P 2 = 

[
3 . 7118 −3 . 9998 

−3 . 9998 14 . 4083 

]
. 

Fig. 1 depicts the largest estimated DoA (region filled in blue) 

nd some trajectories initiating inside it for different time-varying 

equences for δk ∈ �. These trajectories start at the boundary of 

he DoA and converge to the origin. 

Notice that the largest estimated DoA obtained by consider- 

ng a parameter-dependent Lyapunov function is not an ellipsoid, 

ut the intersection of the two ellipsoids (magenta and green 

otted lines) associated with E(P l , 1) . This example highlights 

he non-ellipsoidal characteristic of the parameter-dependent Lya- 

unov function, which can provide a less conservative result in 

omparison with the use of standard quadratic Lyapunov functions. 

xample 2. In this example, our goal is to use Corollary 1 , consid-

ring a practical application with the presence of uncertain time- 

arying parameters. In this sense, consider the inverted pendulum 

odel 

¨(t) = 

g 

l 
sin (θ (t)) − b ̇ θ (t) 

M 

+ 

τ (t) 

Ml 2 
(25) 

here g is the gravitational acceleration, l is the length of the pen- 

ulum rod, M is the total mass and b is the damping coefficient. 

esides that, θ (t) is the angle from the vertical direction and τ (t) 

s the control torque. 

Using the change of variables r = arctan (θ ) , with sin (θ ) = 

2 r) / (1 + r 2 ) and cos (θ ) = (1 − r 2 ) / (1 + r 2 ) 

˙ 
 (1) (t) = x (2) (t) , 

˙ 
 (2) (t) = 

g 

l 
x (1) (t) + 

2 x (1) (t) x 2 
(2) 

(t) 

1 + x 2 
(1) 

(t) 
− b 

M 

x (2) (t )+ 

1 + x 2 
(1) 

(t) 

2 Ml 2 
u (t ) . 

(26) 

Suppose that parameters b and M have uncertainties, such that 

 = M 0 (1 + δ(1) (t)) and b = b 0 (1 + δ(2) (t)) , with M 0 and b 0 be-

ng nominal values and the uncertain parameter vector δ(t) = 

δ(1) (t) δ(2) (t) 
]T 

. Using Euler’s first-order approximation, the 

ollowing discrete-time model is obtained: 

 (1) k +1 = x (1) k + T x (2) k , 

 (2) k +1 = x (2) k + T 

[ 
g 

l 
x (1) k + f n (x k , δk , u k ) 

] 
, (27) 

here T is the sampling period and f n (·) is a rational function 

ith respect to (x , δ ) , given by 
k k 
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Fig. 1. Estimated DoA and some state trajectories (blue dashed lines) for system (24) . L DoA (region filled in blue) is the estimated non-ellipsoidal DoA obtained from 

Corollary 2 , based on parameter-dependent Lyapunov function. The ellipsoidal region represented by the black solid line is the estimated DoA from Corollary 2 , considering 

a quadratic Lyapunov function. The two ellipsoids (magenta and green dotted line) associated with E(P l , 1) are also shown in this figure. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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f n (x k , δk , u k ) = 

2 x (1) k x 
2 
(2) k 

1 + x 2 
(1) k 

− b 0 (1 + δ(2) k ) 

M 0 (1 + δ(1) k ) 
x (2) k 

+ 

1 + x 2 
(1) k 

2 M 0 (1 + δ(1) k ) l 2 
u k 

Thus, system (27) can be recast as a DAR (2) with 

πk = 

[
x (2) k 

1 + x 2 
(1) k 

x (1) k x (2) k 

1 + x 2 
(1) k 

x (2) k 

1 + δ(1) k 

u k 
1 + δ(1) k 

x (1) k u k 

1 + δ(1) k 

]T 

, 

A 1 = 

[ 
1 T 

T g 

l 
1 

] 
, 

A 2 = T 

[ 
0 0 0 0 0 

0 2 x (2) k − b o 

M o 
(1 + δ(2) k ) − δ(1) k 

2 M 0 l 2 
x (1) k 

2 M 0 l 2 

] 
, 

A 3 = 

[ 
0 
T 

2 M 0 l 2 

] 
, �1 = 

[
0 0 0 0 0 

1 0 1 0 0 

]T 

, 

2 = 

⎡ 

⎢ ⎢ ⎣ 

−1 −x (1) k 0 0 0 

x (1) k −1 0 0 0 

0 0 −1 − δ(1) k 0 0 

0 0 0 −1 − δ(1) k 0 

0 0 0 x (1) k −1 

⎤ 

⎥ ⎥ ⎦ 

, �3 = 

⎡ 

⎢ ⎢ ⎣ 

0 

0 

0 

1 

0 

⎤ 

⎥ ⎥ ⎦ 

. 

Choosing T = 0 . 05 s and considering M 0 = 10 Kg, 

 = 2 m, g = 9 . 8 m/s 2 , b 0 = 0 . 5 Ns/m , and � :=
δk ∈ R 

2 : | δ(1) k | ≤ 0 . 1 , | δ(2) k | ≤ 0 . 9 
}

, the optimization problem 

15) was solved for X := 

{
x k ∈ R 

2 : | x (1) k | ≤ 0 . 35 , | x (2) k | ≤ 0 . 75 
}

nd ε = 1 × 10 2 . 

Since the time-varying parameters ( δk ) are not exactly known, 

n this case, Corollary 1 is applied by considering matrices G (·) 
nd K(·) only affine with respect to states (x k ) , as discussed in

ection 5 . Moreover, note that the last three elements of vector πk 

re dependent on (δk ) . For this reason, the respective columns of 

atrix K(·) were nulled, such that the SF control law does not de- 
7 
end on (δk ) . In Appendix C , the obtained controller gain matrices 

re described. 

Fig. 2 depicts the largest estimated DOA (region filled in blue) 

nd some trajectories obtained by simulating the closed-loop sys- 

em from Eq. (27) and the control law (8) , considering different 

ime-varying sequences for δk ∈ �. 

In addition, zoom images at different points are presented in 

ig. 2 . At point 1 (top right corner), taking the DOA as a reference,

here are the overlapping ellipsoids E(P 1 , 1) (magenta), E(P 2 , 1) 

cyan), E(P 3 , 1) (green), and E(P 4 , 1) (orange), in this order. On the

ther hand, at point 2 (lower left corner), the order is reversed, 

hich shows that there are points of intersection between these 

egions, as for the previous example. The estimated DoA is the in- 

ersection of these four ellipsoids. 

This example shows the effectiveness of the proposed method 

hen uncertain time-varying parameters are considered. The fol- 

owing numerical examples illustrate the methodology’s potential, 

howing favorable comparisons with recently published similar ap- 

roaches. 

xample 3. Consider the following nonlinear system that does not 

ave time-varying parameters, adapted from [23] : 

 (1) k +1 = x (2) k , 

 (2) k +1 = x (1) k + 3 x 3 (1) k + x (2) k + u k , 

y k = x (1) k + 1 . 2 x 3 (1) k , (28) 

hich can be recast in a DAR, such that 

πk = x 2 (1) k , A 1 = 

[
0 1 

1 1 

]
, A 2 = 

[
0 

3 x (1) k 

]
, A 3 = 

[
0 

1 

]
, 

1 = 

[
x (1) k 0 

]
, �2 = −1 , �3 = 0 , 

C 1 = 

[
1 0 

]
, C 2 = 1 . 2 x (1) k . (29) 

Two situations are taken into account in this example. Firstly, 

e consider that the whole information about the system’s states 
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Fig. 2. Estimated DoA and some state trajectories (blue dashed lines) for system (27) . L DoA (region filled in blue) is the estimated DoA obtained from Corollary 1 , based on 

parameter-dependent Lyapunov function. The four overlapping ellipsoids (orange, magenta, green, and cyan dotted line) associated with E(P l , 1) are also shown in this figure. 

In addition, zoom images are presented at two points to highlight the crossing of the ellipsoids. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Table 2 

Largest estimated DoA for system (28) obtained from Corollary 1 . 

Control law Polytopic region ( X ) trace ( ) P

Not dependent on πk | x (1) k | ≤ 0 . 81 , | x (2) k | ≤ 0 . 81 3.0483 

Dependent on πk | x (1) k | ≤ 10 . 00 , | x (2) k | ≤ 10 . 00 0.0200 
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Fig. 3. Largest estimated DoA (blue solid line) and some trajec- 

tories (blue dashed line) obtained using Corollary 1 with X := {
x k ∈ R 2 : | x (1) k | ≤ 10 . 0 and | x (2) k | ≤ 10 . 0 

}
(red solid line) and the control law 

dependent on πk . The estimated DoA obtained by considering the control law, 

which is not dependent on πk , is represented by the black dotted line. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

b

r

C

t  

X

s available. In this case, Corollary 1 is used to synthesize an SF 

ontroller. Secondly, we suppose that only partial state informa- 

ion is measured and an SOF controller is designed by applying 

orollary 2 . 

• Case 1: SF Control Design 

The problem, in this case, is to design an SF controller in or- 

er to obtain the largest admissible polytope in state space and 

he largest estimated DoA, such that system (28) can be stabilized. 

t is worth mentioning that this example is explored in Oliveira 

t al. [23] , Reis et al. [35] in the context of rational systems with

nput saturation without incorporating information about the sys- 

em’s nonlinearities in the control law. Although our results com- 

ared favorably with those in Oliveira et al. [23] , Reis et al. [35] ,

ven when the conditions were changed to disregard saturation 

imits, the comparison with these works could be unfair since the 

ontrol design with saturation is not taken into consideration in 

ur current research. In this sense, the results obtained applying 

orollary 1 with and without the nonlinearity vector in the con- 

rol law (as discussed in Remark 1 ) are presented to demonstrate 

he potential of the proposed methodology in drastically reducing 

he design conservativeness. 

In this analysis, we considered that the sys- 

em states are limited to the polyhedral set X := 

x k ∈ R 

2 : | x (1) k | ≤ 10 . 0 , | x (2) k | ≤ 10 . 0 
}

. Thus, the optimization 

roblem presented in (15) was solved and the results obtained are 

hown in Table 2 . 

From Table 2 , one can see that by incorporating information 

bout the system’s nonlinearities in the control law, it is possi- 
8 
le to obtain feasible results for a considerably larger polytopic 

egion. As a result, the largest estimated DoA is obtained from 

orollary 1 with the control law dependent on πk , which provides 

he smallest value for the objective function trace (P ) = . 0200 , with

 := 

{
x k ∈ R 

2 : | x (1) k | ≤ 10 . 0 , | x (2) k | ≤ 10 . 0 
}

and ε = 1 . 
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Fig. 4. Largest estimated DoA (blue solid line) and some trajec- 

tories (blue dashed line) obtained using Corollary 2 with X := {
x k ∈ R 2 : | x (1) k | ≤ 1 . 09 , | x (2) k | ≤ 0 . 97 

}
(red solid line). (For interpretation of 

the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 3 depicts the largest estimated DoA (blue solid line) 

nd some trajectories initiating inside this region. Note that all 

rajectories starting at the boundary of the DoA converge to 

he origin. Fig. 3 also shows the estimated DoA obtained from 

orollary 1 with the control law not dependent on πk (black dot- 

ed line). 

Since there are no time-varying parameters, the use of a stan- 

ard quadratic Lyapunov function (P (δk ) = P ) might be considered. 

owever, from Fig. 3 notice that how the estimated DoA obtained 

ia the proposed approach is considerably less conservative when 

he system’s nonlinearities are taken into account in the control 

aw. The area of the largest estimated DoA from Corollary 1 with 

he control law dependent on πk is given by 314.1583, while the 

rea obtained by considering the control law, which is not depen- 

ent on πk , is equal to 2.0612. 

• Case 2: SOF Control Design 
Fig. 5. Relation betwee

9 
Now, suppose that only the information about x (1) k is avail- 

ble, given by the measured output y . In this case, it is possi-

le to synthesize an SOF controller from Corollary 2 . By using the 

roposed approach, the largest estimated DoA was obtained for 

 := 

{
x k ∈ R 

2 : | x (1) k | ≤ 1 . 09 and | x (2) k | ≤ 0 . 97 
}

. 

Fig. 4 presents the ellipsoidal region that represents the esti- 

ated DoA and some trajectories initiating inside it, which con- 

erge to origin over time. In this case, the area of the estimated 

oA is 2.8639. Note that the measured output presents informa- 

ion about the system’s nonlinearity. Thus, from the SOF controller 

esigned by applying the proposed methodology, it was possible to 

btain a larger estimated DoA than that found using a SF controller 

hich do not take into account the system’s nonlinear behavior in 

he control law. 

In Fig. 5 , it is possible to verify the relation between the value

f the scalar ε and the minimum value of the objective function 

race (P ) obtained from Corollary 2 . 

One can see that the improvement achieved is not a mono- 

onically increasing function of ε. The better result obtained was 

race (P ) = 2 . 5492 , with ε = 0 . 1020 . 

This case shows the effectiveness of the proposed method when 

he complete information about system states is not available. Be- 

ides that, it illustrates how this new approach can be used to de- 

ign SOF controllers when the measurement output presents poly- 

omial functions with respect to (x k ) . 

xample 4. Consider the following nonlinear system, without 

ime-varying parameters, borrowed from Guerra and Vermeiren 

15] : 

 (1) k +1 = x (1) k − x (1) k x (2) k + (5 + x (1) k ) u k , 

 (2) k +1 = −x (1) k − 0 . 5 x (2) k + 2 x (1) k u k , (30) 

hich can be recast in a DAR, such that 

πk = 

[
x (1) k x (2) k x (1) k u k 

]T 
, 

A 1 = 

[
1 0 

−1 −0 . 5 

]
, A 2 = 

[
−1 1 

0 2 

]
, A 3 = 

[
5 

0 

]
, 

1 = 

[
0 x (1) k 

0 0 

]
, �2 = 

[
−1 0 

0 −1 

]
, �3 = 

[
0 

x (1) k 

]
. (31) 

Considering | x (1) k | ≤ b, the goal is to obtain the maximum vari- 

tion for the value b such that there still exists a feasible solu- 

ion, that is, there is a state-feedback control guaranteeing the 
n ε and trace (P) . 



G.L. Reis, R.F. Araújo, L.A.B. Torres et al. European Journal of Control 67 (2022) 100718 

Table 3 

Maximum variations of parameter b obtained using existing 

conditions and the proposed approach. 

Synthesis condition Maximum b

Theorem 5 in Guerra and Vermeiren [15] 1.539 

Theorem 2 in Lendek et al. [19] 1.757 

Theorem 4 in Coutinho et al. [11] 2.041 

Corollary 3 4.800 

Fig. 6. Stability regions for the closed-loop system with the control gains designed 

using Corollary 3 ( ◦) and Theorem 4 in Coutinho et al. [11] ( ·) with b = 2 . 041 . 
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symptotic stability. Table 3 presents the largest b obtained from 

orollary 3 and other control design conditions existing in the lit- 

rature in the context of fuzzy discrete-time Takagi-Sugeno fuzzy 

odels [22] . 

Initially, in Guerra and Vermeiren [15] , feasible solutions were 

btained for b ≤ 1 . 539 . This result is improved using the method-

logy proposed in Lendek et al. [19] , which allowed to solve the 

roblem for b ≤ 1 . 757 . Recently, a better result was obtained in

outinho et al. [11] by delayed nonquadratic Lyapunov functions, 

ith b ≤ 2 . 041 . The comparison shows that, from the proposed 

ethodology, it is possible to obtain feasible results for a largest 

alue of b, given by b = 4 . 800 , with ε = 1 × 10 5 . 
Fig. 7. Time series of the states trajectories and the control input sequence of the clo

10 
It is worth emphasizing that, in the other methodologies pre- 

ented in Table 3 , the regional stabilization with an estimated DoA 

as not took into account. In this sense, Fig. 6 shows a compari- 

on between the stability regions for the closed-loop system with 

he control gains designed using the proposed approach and that 

roposed by [11] , considering b = 2 . 041 . Note that the proposed

onditions provide the largest stability region encompassing that 

btained the methodology in Coutinho et al. [11] . 

Fig. 7 presents state trajectories and the control input sequence 

or b = 4 . 800 . Notice that for this value of b, no feasible solution is

ound for the other stabilization conditions as described in Table 3 . 

The control gains obtained for b = 4 . 800 using Corollary 3 are:

 1 = 18 . 6161 , G 2 = 1 . 8040 , G 3 = 18 . 6133 , G 4 = 1 . 8018 . 

¯
 1 = 

[
−1 . 7773 −10 . 1322 

]
, K̄ 2 = 

[
−1 . 3793 10 . 1322 

]
, 

¯
 3 = 

[
−2 . 5799 −10 . 1322 

]
, K̄ 4 = 

[
−2 . 1837 10 . 1322 

]
. 

ˆ 
 1 = 

[
0 . 1423 −3 . 7850 

]
, ˆ K 2 = 

[
−0 . 2566 −3 . 3862 

]
, 

ˆ 
 3 = 

[
0 . 1384 −3 . 7844 

]
, ˆ K 4 = 

[
−0 . 2602 −3 . 3857 

]
. 

From these results, it is possible to conclude that incorporating 

he vector of nonlinearities into the control law can provide con- 

iderably less conservative results in comparison with controllers 

hat use only the information on the system state vector. Further- 

ore, it is worth registering that we notice that the use of linear 

nnihilators also contributed significantly to reduce conservative- 

ess. 

. Conclusion 

This paper has proposed new conditions to compute gain- 

cheduled SF and SOF controllers with a DoA estimation for ratio- 

al nonlinear discrete-time systems subject to time-varying param- 

ters. The method builds up on DARs of the system dynamics and 

arameter-dependent Lyapunov functions, leading to convex opti- 

ization problems in terms of LMIs with a linear search parame- 

er. Regarding SF control, a novel condition was presented where 

he system’s nonlinearities are taken into account in the control 

aw, showing favorable results compared to other approaches in 

he literature. Furthermore, a new solution for SOF control, not 
sed-loop system with the controller designed using Corollary 3 for b = 4 . 800 . 
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xplored in the context of DARs for discrete-time systems, was 

rovided. The proposed SOF control design condition requires nei- 

her matrix-rank constraints nor iterative algorithms. In addition, it 

an be applied to rational nonlinear systems with nonlinear and/or 

arameter-dependent output matrix. Three numerical examples il- 

ustrated the effectiveness and advantages of the proposed method. 

or future research, we are particularly interested in exploring the 

se of polynomial Lyapunov functions aiming to improve our re- 

ults. 
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ppendix A. Linear annihilator 

The matrix ℵ x (x k ) : R 

n x → R 

n q ×n x is a linear annihilator of state

ector x k if ℵ x (x k ) x k = 0 and ℵ x (x k ) is linear with respect to x k .

ote that there is no single annihilator to a given system. In this 

aper we will use the following annihilator proposed by Trofino 

nd Dezuo [45] , that takes into account all possible product pairs 

 (i ) k x ( j) k , ∀ i, j ∈ I n x and i  = j: 

 x (x k ) = 

⎡ 

⎣ 

�1 (x k ) �1 (x k ) 
. . . 

. . . 
�n x −1 (x k ) �n x −1 (x k ) 

⎤ 

⎦ , with (A.1) 

 

 

 

 

 

 

 

 

 

 

 

�i (x k ) = −x (i ) k I n x −i , i ∈ I n x −1 , 

�1 (x k ) = 

[
x (2) k . . . x (n x ) k 

]T 
, 

�i (x k ) = 

⎡ 

⎣ 

x (i +1) k 

0 (n x −i ) ×(i −1) 

. . . 
x (n x ) k 

⎤ 

⎦ , i ∈ [2 , n x − 1] , 

(A.2) 

nd the number of rows n q = 

∑ n x −1 
j=1 

j. 

ppendix B. LMI relaxation 

In Theorems 1 and 2 , it is supposed that inequalities (10) and 

17) are dependent on (x k , δk , δk +1 ) , Eq. (12) is dependent on

x k , δk ) , and inequalities (11), (18) , and (19) are dependent on (δk ) .

hus, the sufficient conditions provided by these inequalities are 

odeled through a multi-simplex framework, i.e., the feasibility 

roblem is of infinite dimension, which is not computationally 

ractable, and some underlying structure should be imposed on the 

ssociated matrices to numerically solve the problem. In this sense, 

 finite set of LMIs in terms of the vertices of the polytopes X and

can be obtained, as follows. 

emma 2. Suppose �n 
i jlm 

, with i, j ∈ I N x and l, m, n ∈ I N δ , are ma-

rices of appropriate dimensions, such that 

(x k , δk , δk +1 ) = 

N x ∑ 

i =1 

N x ∑ 

j=1 

N δ∑ 

l=1 

N δ∑ 

m =1 

N δ∑ 

n =1 

αx (i ) k 
αx ( j) k 

αδ(l) k 
αδ(m ) k 

αδ(n ) k +1 
�n 

i jlm

< 0 . (B.1)

(

11 
If the following LMIs hold for all i, j ∈ I N x and l, m, n ∈ I N δ
�n 

iill < 0 , i = j, l = m, 

�n 
i jll + �n 

jill < 0 , i < j, l = m, 

�n 
iilm 

+ �n 
iiml < 0 , i = j, l < m, 

�n 
i jlm 

+ �n 
i jml + �n 

jilm 

+ �n 
jiml < 0 , i < j, l < m, (B.2) 

then inequality (B.1) is satisfied. 

roof. The hypothetical matrix in (B.1) can be rewritten as 

(x k , δk , δk +1 ) = 

N δ∑ 

n =1 

N x ∑ 

i =1 

N δ∑ 

l=1 

α2 
x (i ) k 

α2 
δ(l) k 

αδ(n ) k +1 
�n 

iill 

+ 

N δ∑ 

n =1 

N x −1 ∑ 

i =1 

N x ∑ 

j= i +1 

N δ∑ 

l=1 

αx (i ) k 
αx ( j) k 

α2 
δ(l) k 

αδ(n ) k +1 

(
�n 

i jll + �n 
jill 

)
+ 

N δ∑ 

n =1 

N x ∑ 

i =1 

N δ−1 ∑ 

l=1 

N δ∑ 

m = l+1 

α2 
x (i ) k 

αδ(l) k 
αδ(m ) k 

αδ(n ) k +1 

(
�n 

iilm 

+ �n 
iiml 

)
+ 

N δ∑ 

n =1 

N x −1 ∑ 

i =1 

N x ∑ 

j= i +1 

N δ−1 ∑ 

l=1 

N δ∑ 

m = l+1 

αx (i ) k 
αx ( j) k 

αδ(l) k 
αδ(m ) k 

αδ(n ) k +1 

(
�n 

i jlm 

+ �n 
i jml 

+�n 
jilm 

+ �n 
jiml 

)
. 

Since αp ( v ) k 
≥ 0 , if (B.2) are satisfied, then condition (B.1) is 

uaranteed. 

xample 5. Let consider a system with N x = 2 and N δ = 2 . By

emma 2 , condition (B.1) is ensured if 

1 
1111 < 0 , �1 

1122 < 0 , �1 
2211 < 0 , �1 

2222 < 0 , 

�2 
1111 < 0 , �2 

1122 < 0 , �2 
2211 < 0 , �2 

2222 < 0 , 

�1 
1211 + �1 

2111 < 0 , �1 
1222 + �1 

2122 < 0 , �2 
1211 

+ �2 
2111 < 0 , �2 

1222 + �2 
2122 < 0 , 

�1 
1112 + �1 

1121 < 0 , �1 
2212 + �1 

2221 < 0 , �2 
1112 

+ �2 
1121 < 0 , �2 

2212 + �2 
2221 < 0 , 

�1 
1212 + �1 

2112 + �1 
1221 + �1 

2121 < 0 , �2 
1212 

+ �2 
2112 + �2 

1221 + �2 
2121 < 0 , 

esulting in 18 LMIs to be solved. 

Lemma 2 can be used to treat computationally inequalities 

10) and (17) . Finally, considering the polytopic description of ma- 

rices P (δk ) , G (x k , δk ) , and F (δk ) in (11) and (18), (12) , and (19) it

s possible to obtain the finite-dimensional LMIs, respectively 

1 � 

a p P l 

]
≥ 0 , p ∈ I n e , l ∈ I N δ , (B.3) 

 

T 
il + G il > 0 , i ∈ I N x , l ∈ I N δ , (B.4)

 

T 
l + F l > 0 , l ∈ I N δ . (B.5) 

�

It is worth mentioning that the proposed methodology to ob- 

ain the LMI conditions can be easily adapted for robust con- 

roller design, discussed in Section 5 . In this scenario, considering 

he proposed approach for SF control, we have the gain matrices 

 (x k ) = 

∑ N x 
i =1 

αx (i ) k 
G i and K(x k ) = 

∑ N x 
i =1 

αx (i ) k 
K i . On the other hand,

or the SOF control design, we only have to consider F and H as 

onstant matrices. Notice that, inequalities (10) and (17) continuo 

o be dependent on (x k , δk , δk +1 ) , and Lemma 2 can be applied in

 straightforward way for a control law that does not depend on 

δ ) . 
k 
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ppendix C. List of control gains in Examples 1 and 2 

The SOF controller gains for Example 1 are given by 

 1 = 9 . 8265 , F 2 = 11 . 8209 , H 1 = 11 . 2750 , H 2 = 5 . 6487 . 

Thus, we have the gain matrices 

 (δk ) = 

N δ∑ 

l=1 

αδ(l) k 
F l and H(δk ) = 

N δ∑ 

l=1 

αδ(l) k 
H l , N δ = 2 . 

The normalized vector αδk 
can be obtained using the following 

olytopic decomposition 

δk 
= 

[
βδ1 (1) k βδ1 (2) k 

]T 

ith 

δ1 (1) k = 

δ(1) k − δ(1) k 

δ(1) k − δ(1) k 

, βδ1 (2) k = 

δ(1) k − δ(1) k 

δ(1) k − δ(1) k 

. 

here δ(1) k and δ(1) k are the maximum and minimum values of 

(1) k , respectively. 

For Example 2 , the SF controller gains obtained using 

orollary 1 are: 

 1 = 0 . 0377 , G 2 = 0 . 0297 , G 3 = 0 . 0375 , G 4 = 0 . 0300 . 

 1 = 

[
−20 . 6417 −50 . 4402 −15 . 1305 −51 . 6344 0 0 0 

]
, 

 2 = 

[
−17 . 3959 −56 . 6913 2 . 2497 57 . 8815 0 0 0 

]
, 

 3 = 

[
−19 . 9731 −57 . 0337 −8 . 0197 −55 . 2980 0 0 0 

]
, 

 4 = 

[
−16 . 9967 −50 . 4726 −4 . 6552 54 . 0447 0 0 0 

]
. 

The gain matrices G (x k ) and K(x k ) are given by 

 (x k ) = 

N x ∑ 

i =1 

αx (i ) k 
G i and K(x k ) = 

N x ∑ 

i =1 

αx (i ) k 
K i , N x = 4 . 

Similar to the previous case, the normalized vector αx k 
can be 

btained using the following polytopic decomposition 

x k = 

[
βx 1 (1) k βx 2 (1) k βx 1 (2) k βx 2 (1) k βx 1 (1) k βx 2 (2) k βx 1 (2) k βx 2 (2) k 

]T 

ith 

x s (1) k = 

x (s ) k − x (s ) k 

x (s ) k − x (s ) k 

, βx s (2) k = 

x (s ) k − x (s ) k 

x (s ) k − x (s ) k 

, s ∈ I n x . 

here x (s ) k and x (s ) k are the maximum and minimum values of 

 (s ) k , respectively. 
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