
An evolutionary search algorithm for efficient
ResNet-based architectures: a case study on gender

recognition
André Ramos Fernandes da Silva†, Lucas Marcondes Pavelski†, Luiz Alberto Queiroz Cordovil Júnior†,

Paulo Henrique de Oliveira Gomes†, Layane Menezes Azevedo† and Francisco Erivaldo Fernandes Junior†,∗
†Retail Management System Research Group

Sidia R&D Institute, Sidia Amazon Tower, Darcy Vargas Avenue, 654, 69055-035, Manaus, AM, Brazil
Email: {andre.fernandes, lucas.pavelski, luiz.cordovil, paulo.henrique, layane.azevedo, francisco.junior}@sidia.com

(∗Corresponding Author. All authors had equal contribution)

Abstract—Neural Architecture Search (NAS) is a busy research
field growing exponentially in recent years. State-of-the-art deep
neural networks usually require a specialist to fine-tune the
model to solve a specific problem. NAS research aims to design
neural network architectures automatically, thus easing the need
for machine learning specialists to spend a lot of effort on
hand-crafted attempts. As artificial intelligence applications are
becoming ubiquitous, there is also a growing interest in efficient
applications that could be deployed to smartphones, smart
wearable devices, and other edge devices. Gender recognition in
unfiltered images — such as those we find in real-world situations
like pictures taken with smartphones and video shots from
surveillance cameras — is one of such challenging applications.
In this work, we developed an evolutionary NAS algorithm that
consistently finds efficient ResNet-based architectures, named
RENNAS, which have a good trade-off between classification
accuracy and architectural and computational complexities. We
demonstrate our algorithm’s performance on Adience dataset of
unfiltered images for gender recognition.

Index Terms—Evolutionary Neural Architecture Search,
Residual Neural Networks, Genetic Algorithms, Computer Vi-
sion, Gender Recognition

I. INTRODUCTION

Artificial intelligence applications on smartphones and edge
devices are becoming popular. One of these applications is
gender recognition [1], [2]. Gender classification or gender
recognition tasks aim to identify the gender of a person
based on their characteristics, which is generally done by
differentiating between two genders: male and female. There
are plenty of motivations for gender recognition. For example,
demographic factors like gender and age can be used by
retailers to recommend products through customized advertis-
ing [3]. Besides that, it is also applicable on security: this type
of information can be used to identify criminals and terrorists
through surveillance cameras [4].

Furthermore, one can notice the need to develop assessment
measures that take into account the limited computational
resources of these devices. On the other hand, deep neural net-
works (DNNs) became the state-of-the-art for many machine
learning tasks [5]. Particularly, convolutional neural networks
(CNNs) perform well in computer vision applications [6]. As

the models become deeper and more complex, embedding
them on edge devices is a challenging task.

State-of-the-art network models show that networks with
a high number of layers (depth) are able to achieve good
performance on several tasks [7]. However, by increasing
the number of nonlinear transformations, the accuracy gets
saturated, making it harder to train. Residual Neural Networks
(ResNet) add skip connections between layers to cope with the
training accuracy degradation issue, allowing deeper models to
get better performance and lower complexities than previous
models [8].

However, the design process of DNN architectures demands
a lot of trial-and-error work that consume large computational
resources, and it still can be sensible to a specific task and
the data distribution [9]. Neural Architecture Search (NAS)
emerged to ease the design of neural networks in a completely
automatic way [10]. In order to solve this optimization prob-
lem, evolutionary algorithms like Genetic Algorithms (GA)
are widely used [11], [12]. GA allows us to find the best
network in a search space for a specific problem, but if the
search space is too large it could take a long time to converge.
Aiming to reduce the search space, the use of blocks has been
promising [13], [14]. Thus, the search space is limited by the
blocks representation which allows faster results.

For applications on edge devices, accuracy should not be
the only performance indicator, since the network size and
prediction time are also a concern. Therefore, we should
consider them while evaluating CNN architectures in the GA
fitness function. The NetScore was designed to assess the
balance between classification accuracy, network architecture
complexity and computational complexity [15]. In this work,
we show that if we use the NetScore with the default coef-
ficients, the Evolutionary Neural Architecture Search (ENAS)
will prioritize tiny networks at the expense of classification
accuracy. However, it is possible to reformulate the function
in a way that it penalizes the fitness value if the accuracy
decreases below a certain threshold. Our results show how
this new NetScore configuration improves the search towards
more efficient networks that preserve a competitive classifica-

978-1-6654-6708-7/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 C
on

gr
es

s o
n

Ev
ol

ut
io

na
ry

 C
om

pu
ta

tio
n

(C
EC

) |
 9

78
-1

-6
65

4-
67

08
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CE
C5

50
65

.2
02

2.
98

70
43

4

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on September 17,2024 at 00:19:15 UTC from IEEE Xplore. Restrictions apply.

tion accuracy. Moreover, we validate the proposed NetScore
configuration on the well-known CIFAR-10 dataset [16].

Here, we test the proposed ENAS for gender recognition
task. The search was performed using the Adience dataset [17],
which consists of unfiltered images (captured from smartphone
cameras) for gender recognition and age estimation. One
of the most challenging computer vision tasks consists on
learning from unfiltered images that can be seen in real-world
applications, e.g., photographs taken from cellphones, video
shots from surveillance cameras and others. These images may
have great variation in lighting conditions, posture, occlusion,
angle, resolution etc.

Our main contributions are: a reformulation of the NetScore
function that allows finding simpler ResNets keeping com-
petitive accuracy; how to select a sound configuration of
NetScore’s accuracy and network complexities coefficients for
a specific application according to the user’s preferences; a
set of custom mutation operators for searching ResNet-based
architectures with ENAS. To the best of our knowledge, no
proposal has been made for automatic neural architecture
search to address the problem of gender recognition in un-
filtered images.

The remainder of this paper is organized as follows. Sec-
tion II reviews NAS methods. Section III details our proposed
algorithm. Section IV introduces the experiment settings. Sec-
tion V presents the results. Finally, Section VI concludes with
a summary regarding achievements, contributions, limitations
and an outline of future works.

II. RELATED WORKS

There is a growing interest in ENAS. The first works in
this area date back to 1980s, e.g. adapting weights using
evolutionary algorithms. These former strategies are surveyed
in [18]. Recently, the number of publications in the area
doubles every year since 2017, with later studies using modern
DNN architectures for image and text applications. We briefly
review some works using NAS. For in-depth surveys see [9],
[10].

As the NAS development progresses, block-based tech-
niques are being used to define the search space, combining
various types of layers as the basic unit [19]. These block-
based techniques present good performance while finding
suitable architectures with fewer parameters.

Zhong et al. [20] proposed BlockQNN, the first block-wise
NAS. Defining basic block structures — such as inception-
block or residue-block — and replicating them along the
network layers was a successful design strategy for many
hand-crafted architectures. BlockQNN follow this strategy
and generates automatically-designed blocks using the well-
known Reinforcement Learning (RL) technique Q-Learning.
It uses a reward function that seeks a trade-off by rewarding
accuracy and penalizing the number of FLOPs (floating points
operations) and network density. However, they do not show
the implicit trade-off represented by the FLOPs and network
density penalty coefficients.

Xue et al. [19] proposed a GA with adaptive mutation to
search mixed architectures containing ResNet, DenseNet and
max pooling blocks. The authors introduce a variable-length
strategy for individuals encoding and block-based genetic
operators. The search is guided considering the accuracy on the
validation set as fitness function. The optimization is devoted
to the type of blocks and do not embraces internal parameters
such as number of filters, for instance.

Loni et al. [21] proposed DeepMaker for automatic design
of DNNs for embedded devices. Combined with a pruning
strategy, the network search is formulated as a multi-objective
optimization problem that considers accuracy and network
size. The parameters’ optimization is performed by Non-
Dominated Sorting Genetic Algorithm (NSGA-II). However,
the search space for each parameter is pre-defined which limits
the candidate DNNs and the number of filters is not covered
in the search. Loni et al. [22] also proposed the FastStereoNet
for searching CNNs efficiently in a non-block-based search
space for resource-limited devices. It employs a late accep-
tance hill climbing (LAHC), followed by simulated annealing
(SA). A transferred weights mechanism improves training and
evaluation of CNNs. However, it limits the number of filters
and network depth.

Zoph and Le [23] proposed a NAS to search networks
that can have skip connections between layers as in ResNet.
They trained a Recurrent Neural Network (RNN) with RL
to automatically design CNNs. Accuracy is used as reward
signal in the design of CNNs which includes the definition of
number of filters, kernel size, stride and activation function
type. It achieves 3.65% error rate on CIFAR-10, but with
CNN that are too large considering edge devices (up to 37M
parameters). Pham et al. [24] follow a similar search strategy
and proposed the Efficient Neural Architecture Search. They
use parameter sharing for candidate models obtained during
the search to significantly reduce the computational cost of the
NAS. However, the CNN parameters are pre-set. Accuracy is
also used as reward function, which results in large CNNs.

Javaheripi et al. [25] proposed GeneCAI, a generic solution
based on evolutionary algorithms to compress pre-trained
DNNs (ResNet-50, AlexNet and VGG-16) while maximally
preserving model accuracy using a multi-objective score based
on accuracy and number of FLOPs. GeneCAI exploits paral-
lelism to reduce optimization time and an auxiliary application
programming interface (API) was developed to allow multi-
GPU execution. Nevertheless, GeneCAI does not design an
optimized network from scratch, since it needs a pre-trained
DNN as a starting point.

Regarding gender recognition tasks, one can find different
approaches of CNNs in literature. In this paper, we compare
our proposal with architectures applied to gender recognition
in Adience Benchmark [17]. For example, some authors
propose the use of GoogleNet and CaffeNet [26], ResNet-
50 [27], CNNs with saliency maps [28], deepwise separable
CNNs [29], and other conventional CNNs [30]–[32]. They
achieve 80.8% to 96.2% accuracy on this gender recognition
benchmark. However, these architectures were manually de-

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on September 17,2024 at 00:19:15 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: RENNAS – ResNet-based Evolutionary Neural Architecture Search
Input : T (training dataset), V (validation dataset)
Parameters : α (accuracy coefficient), β (parameters coefficient), γ (MACs coefficient), C (population size),

G (number of generations), pm (mutation probability), pc (probability of changing base values), δ (noise range)
ε (probability of noise falling out of the range), ηNAS (NAS training epochs), ηref (refinement training epochs)

Output : Xf (fittest individual), a(Xf) (validation accuracy), p(Xf) (number of parameters), m(Xf) (MACs), Ω(Xf) (NetScore)

1 P0 ← GENERATE INITIAL POPULATION(C); // as detailed in Section III-B
2 TRAIN(P0, T , ηNAS);
3 EVALUATE(P0, T , α, β, γ); // as detailed in Section III-C
4 for t ← 1 to G do
5 Qt ← GENERATE OFFSPRING(Pt−1, pm, pc, δ, ε); // as detailed in Section III-D
6 TRAIN(Qt, T , ηNAS);
7 EVALUATE(Qt, T , α, β, γ);
8 Ut ← Pt−1 ∪Qt;
9 Pt ← ENVIRONMENTAL SELECTION(Uk, C); // as detailed in Section III-E

10 end
11 Xf ← fittest individual from PG; // fittest individual at the last generation
12 TRAIN(Xf , T , ηref); // as detailed in Section III-F
13 EVALUATE(Xf , V, α, β, γ);
14 return Xf , a(Xf), p(Xf), m(Xf), Ω(Xf)

signed.
ResNets are CNNs composed by linear stacking of residual

blocks [8]. A residual block is a sequence of convolutions
connected by a shortcut connection. While the convolution se-
quence performs a series of non-linear operations, the shortcut
connection adds the input signal to the output of the block’s
last convolution. DenseNet [33] also employs shortcut connec-
tions. In order to maximize information flow, they connect all
layers with shortcut connections so that each layer receives
the outputs of all previous ones. ResNeXt [34] generalizes the
ResNet blocks by adding parallel convolutional branches with
the same architecture. Due to the block structure, the block’s
cardinality (number of parallel branches) is a hyperparameter
that can be easily optimized for different learning tasks.

In this work, we propose to use the NetScore as fitness
function and evaluate its effects on a NAS algorithm.

III. RENNAS: RESNET-BASED EVOLUTIONARY NEURAL
ARCHITECTURE SEARCH

Our proposed evolutionary neural architecture search is
based on Genetic Algorithm (GA), which explores the search
space seeking a neural network with the best trade-off be-
tween classification accuracy and architecture complexity, i.e.,
number of parameters and Multiply-Accumulate Operations
(MACs) as defined in Algorithm 1.

ResNets [8] performs well in several computer vision tasks.
It is known that some tasks may benefit from deeper archi-
tectures [35], [36], different numbers of building blocks and
number of filters [37]. In this way, ResNet’s search space is
still underexplored in NAS literature. In [38] one can see
recent initiatives on designing ResNet-based design spaces
to parameterize populations of architectures. In this context,
we designed a search space with variable network depth,
based on ResNet building blocks, and number of filters. The
proposed algorithm is a population based that automatically
evolves ResNet-based architectures. Individuals are encoded to

represent a sequence of ResNet blocks with different numbers
of filters.

First, an initial population containing random variable-
length individuals is set. Then, the usual steps of GA are
performed: evaluation of each individual according to a fitness
function, offspring generation by crossover and mutation, and
selection of promising architectures that will survive and pass
to the next generation. These procedures are executed for a
given number of iterations until reaching the pre-set maximum
number of generations. Finally, the last generation’s fittest
individual is trained to its full capacity. In the end of this
process, one expect to find a ResNet-based network with a
good balance between classification accuracy and architecture
complexity. In the following sections, we give details about
each of these modules.

A. Individual’s Encoding Scheme

Let P be a population composed by C individuals and let
Xi be the i-th individual belonging to P . We define that

Xi = [χi,1, χi,2, . . . , χi,j , . . . , χi,N] (1)

where |Xi| = N is the number of genes and χi,j = (fi,j , bi,j)
is the j-th gene representing a list of bi,j ResNet building
blocks with fi,j filters per layer.

The individual defined in (1) is encoded to represent a
ResNet-based convolutional neural network as one can see in
Figure 1. The first convolutional layer has fi,1 filters, then
it is followed by a sequence of ResNet blocks defined by
the genes. The network has two types of ResNet building
blocks: ordinary RB and RB?, as shown in Figure 2. We
use the ordinary ResNet Block (ordinary RB) when we want
the block’s output tensor size to be equal to the input tensor
size, i.e., when the input and output of each convolutional
layer have equal dimensions. The ordinary RB is shown
in Figure 2a. However, when we need to reduce a block’s
output tensor’s width and height and change the number of
filters in the subsequent block, dimension compatibility is

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on September 17,2024 at 00:19:15 UTC from IEEE Xplore. Restrictions apply.

necessary to keep the shortcuts. The building block RB?

is used to perform such dimension compatibility through a
downsampling operation composed of a convolutional layer
with a stride equal to 2, as shown in Figure 2b. We connect
the ResNet blocks in the following way: for the first gene
we connect bi,1 ordinary RB blocks, each with fi,1 filters;
for the following genes we start with one RB? followed by
bi,j−1 ordinary RB blocks. All filters have size equals to 3×3.
The last convolutional layer is connected to a Global Average
Pooling (GAP) layer [39]. Finally, the GAP is connected to
a fully-connected layer whose output will predict the image’s
class.

Since, for 2 ≤ j ≤ N , adjacent genes χi,j−1 and χi,j
are connected with downsampling RB? blocks, we impose
a limit on individual’s size in order to avoid creating un-
necessary layers. We define that the minimum number of
genes is min|X | = 2 and the maximum number of genes
is max|X | = log2

(
min(inputwidth, inputheight)

)
− 1, where

inputwidth and inputheight are the input image’s width and
height, respectively.

B. Population Initialization
The initial population P0 is composed by C individuals,

which are generated considering a variable-length strategy for
encoding. For i = 1, . . . , C, individual Xi will have Ni genes
such that it is uniformly chosen from Ni ∼ U(min|X |, max|X |).

As for the genes’ base values, let Pois(λ) be a Poisson
random variable such that E [Pois(λ)] = λ. A gene’s base
values are initialized as:

fi,j = 1 + Pois(λ = 2i+3 − 1)

bi,j = 1 + Pois(λ = 2)

for j = 1, . . . , Ni. Then, E[fi,j] = 2i+3 and E[bi,j] = 3.
In this way, the initial population will have distribution of
parameters similar to typical values for ResNet blocks as one
can see in the literature [8].

C. Evaluation of Individuals
Let N be a neural network with accuracy a(N), number of

parameters p(N) and multiply-accumulate (MAC) operations
m(N). These indicators compose the NetScore [15] as follows

Ω(N) = 20 log

(
a(N)α

p(N)βm(N)γ

)
(2)

where α, β, and γ are the coefficients of accuracy, number of
parameters and MACs, respectively. p(N) is scaled in millions
of parameters and m(N) in billions of MACs.

The NetScore function can be very useful to guide the evo-
lutionary search towards efficient neural architectures. From
equation (2), one can notice that number of parameters and
MACs are inversely proportional to NetScore insofar as ac-
curacy is directly proportional. Using NetScore as a fitness
function, one can suspect that the evolutionary search will
favor neural networks with as few parameters as possible at
the expense of accuracy, since

lim
p(N)→0

Ω(N) =∞

The same is true when m(N) → 0. Consequently, the
simpler the network, the higher the NetScore. Nonetheless,
this drawback can be avoided in practice if we set values
for α, β, and γ to impose a strict trade-off relation between
network accuracy and network complexities. We performed
experiments with different values of α, β, and γ (sec. IV-B)
and obtained insights about their effects on NAS (sec. V-A).

Consider two networks N1 and N2 such that

a(N2) = (1−∆a)a(N1)

p(N2) = (1−∆p)p(N1)

m(N2) = (1−∆m)m(N1)

where ∆a, ∆p, ∆m ∈]0, 1[denote the attenuation rates.
We could allow the search algorithm to reduce the number of
parameters by ∆p and MACs by ∆m but only if it resulted in
a small ∆a loss of classification accuracy. If we believe these
trade-offs are acceptable, then we can say that N1 and N2 are
equivalent in terms of NetScore. Making Ω(N1) = Ω(N2),
it follows that the relation between the attenuation rates
∆a, ∆p, ∆m and the NetScore’s coefficients α, β, and γ
is:

α log (1−∆a)− β log (1−∆p)− γ log (1−∆m) = 0 (3)

The practical meaning of (3) is that it becomes unlikely that
the ENAS will drastically drop the number of parameters
(or MACs) at the expense of classification accuracy from
one generation to another. Also, this trade-off relation allows
the ENAS the opportunity to consider networks with lower
complexities.

It goes without saying that computing a(N) is a demanding
task, because we need to train the network. Notwithstanding,
during the architecture search phase we are more interested in
selecting promising architectures. In order to save search time,
we perform training for ηNAS epochs just enough to obtain a
reasonable a(N) estimate.

D. Offspring Generation

Let Pt be the population in the t-th GA generation. For each
GA iteration, a set of offspring Qt will be generated from Pt
such that |Pt| = |Qt| = C. The offspring are generated using
the following operators.

a) Mate Selection: This operator selects two individuals
from P that will mate and reproduce. The binary competition
strategy is employed for mate selection [40]. By randomly
selecting two individuals in the population, the one with a
highest NetScore wins the mate competition and is selected to
be the first parent. In the sequel, the same procedure is repeated
for the second parent. It is noteworthy that an individual can
be selected more than once.

b) Crossover: For a given crossover point randomly
chosen from a uniform distribution, such that cp ∼
U(1,min(|X1|, |X2|) − 1), the crossover is carried out as
follows. Let X1 and X2 be two parents and X3 and X4 be

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on September 17,2024 at 00:19:15 UTC from IEEE Xplore. Restrictions apply.

R
B
(f
i
,1
)

. . .

R
B
(f
i
,1
)

χi,1

R
B
∗
(f
i
,2
)

. . .

R
B
(f
i
,2
)

χi,2

. . .

R
B
∗
(f
i
,N

)

. . .

R
B
(f
i
,N

)

χi,N
3
×

3
co

nv
,
f
i
,1

im
ag

e B
N

+
R

eL
u

ad
ap

tiv
e

av
er

ag
e

po
ol

fc

Xi

Fig. 1. ResNet-based architecture. ‘fc’ denotes the fully-connected layer. ‘adaptive average pool’ denotes the global average pooling layer.

3× 3 conv, fi,j

3× 3 conv, fi,j

+

BN + ReLu

BN

ReLu

x

(a)

3× 3 conv, fi,j , /2

3× 3 conv, fi,j

+

BN + ReLu

BN

ReLu

3× 3 conv, fi,j , /2

BN

x

(b)

Fig. 2. ResNet building blocks. (a) ordinary RB. (b) RB?: an RB with
downsampling (stride 2). The notation ‘’/2’ represents downsampling with
stride 2. ‘BN’ represents batch normalization which is performed right after
each convolutional layer and before ReLu activation.

two offspring to be generated [41]. It is noteworthy that this
operator accepts parents with different number of genes.

X3 =
[
χ1,1, . . . , χ1,cp , χ2,cp+1, . . . , χ2,|X2|

]
X4 =

[
χ2,1, . . . , χ2,cp , χ1,cp+1, . . . , χ1,|X1|

]
c) Mutation: The mutation operator is applied on off-

spring with pm probability, which is defined previously. If an
individual is chosen for mutation, there will be 3 possible
outcomes: adding a new gene, removing a gene, or changing
a gene’s base values (adding/removing filters and ResNet
building blocks):

(i) Adding a new gene: Let ma ∼ U(1, |Xi| + 1) be
an insertion position randomly chosen from a uniform
distribution. A new gene (f, b) will be inserted in Xi
at position ma. Its number of filters f and number of
ResNet building blocks b will be randomly set according
to the following distribution. Let Pois(λ) be a Poisson
random variable such that E [Pois(λ)] = λ. Then, we
make b = 1 + Pois(λ = 2) and, the number of filters

f =

1 + Pois(λ = d0.5fi,1e − 1), if ma = 1

1 + Pois(λ = 2fi,N − 1), if ma = |Xi|+ 1

1 + Pois(λ =
√
fi,mafi,ma−1 − 1), otherwise.

Making it so will result in E[b] = 3 and E[f] having a
compatible order of magnitude depending on its adjacent
genes.

(ii) Removing a gene: Let mr ∼ U(1, |Xi|) a random gene
index. The mr-th gene will be removed from the chro-
mosome.

(iii) Changing genes’ base values: In this mutation, each gene
is updated with a probability pc. Suppose that a gene
(fi,j , bi,j) is chosen for mutation. Then, a noisy vector
(αf , αb) is added to the gene’s base values

fi,j := max(1, fi,j + αf)

bi,j := max(1, bi,j + αb)

The noisy terms have a Gaussian distribution αf ∼
N
(

0, σ2
f

)
and αb ∼ N

(
0, σ2

b

)
, such that

σf =
0.5δfi,j√

2erf−1 (1− 2ε)
, σb =

0.5δbi,j√
2erf−1 (1− 2ε)

where erf−1(·) is the inverse error function. δ and ε were
chosen such that

P (−0.5δfi,j ≤ αf ≤ 0.5δfi,j) = 1− ε
P (−0.5δbi,j ≤ αb ≤ 0.5δbi,j) = 1− ε

This means that δ defines a range of noise values pro-
portional to the gene’s base values and ε defines the
probability of αf or αb falling outside this range.

Each mutation strategy has the same probability to occur.
If an individual is chosen to be mutated, it must be mutated
one way or another, considering the following special cases:

(i) A mutated individual’s length cannot be greater than
max|X |. If |Xi| = max|X |, then mutation by removing
a gene or changing genes’ base values is applied.

(ii) A mutated individual’s length must not be reduced below
min|X |. If |Xi| = min|X |, then mutation by adding a new
gene or changing a genes’ base values is applied.

E. Environmental Selection

Environmental selection chooses the individuals that will
survive until the next generation. We use a semi-complete
binary competition strategy to avoid the elimination of the
excellent individuals [19]. Let Pt and Qt be the parent and
offspring population at the t−th generation, respectively. The

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on September 17,2024 at 00:19:15 UTC from IEEE Xplore. Restrictions apply.

next population Pt+1 will be composed according to the
following steps:

(i) Put Pt and Qt in the same set Ut = Pt ∪Qt.
(ii) Generate a random number k such that 1 ≤ k ≤ C/2.

(iii) Let Fk ⊂ Ut be the k individuals with the highest fitness
values from Ut. Put Fk in Pt+1.

(iv) Select C−k individuals from Ut−Fk = Sk using binary
competition and put then in Pt+1. The binary competition
picks two random individuals and select the fittest.

F. Final Model Refinement
After G generations, we expect that the fittest individual Xf

has a good architecture automatically tuned for the problem
represented by the dataset. Then, it is chosen as the final model
and it is fully trained with more ηref epochs than in the search
phase.

IV. METHODOLOGY

This section details the experiment settings to evaluate
RENNAS. We introduce the benchmarks used for image
classification, the parameters assignments for NetScore trade-
off and the assessment strategies for each benchmark. All
experiments were run on NVIDIA Tesla V100 GPUs with
16GB of memory.

A. Benchmarks Description
In this work we test the RENNAS in two benchmark

datasets: CIFAR-10 [16] and Adience Benchmark [17].
Several NAS proposals consider CIFAR-10 as a bench-

mark [9]. This dataset contains 32x32 pixels natural images of
animals, plants and objects 1. The CIFAR-10 dataset contains
60, 000 images labeled into 10 classes. Our NAS uses 50, 000
images for training and the remaining 10, 000 are reserved
as test set for the final comparison. To improve the network
generalization, we use the following data augmentation steps
during training: adding 4 white padding pixels, flipping hor-
izontally with probability 0.5, random cropping back to size
32x32 pixels.

Another database we use in the experiments concerns a
gender classification task and it is named Adience Bench-
mark [17]. This database consists of faces from Flickr albums.
It has several challenging real-world conditions like different
angles, lighting, pose, and others. There are a total of 19, 487
photos from 2, 284 subjects classified into male and female 2.
The experiments follow the 5-fold cross-validation procedure
described in [17]. Regarding images settings, we used the
frontalized images resized to 256 × 256 pixels. Each image
channel (Red, Green and Blue) was normalized with mean
[0.30767522, 0.34428763, 0.4452923] and standard deviation
[0.19725059, 0.21831386, 0.25025621]. During training, we
employ the following data augmentations: random horizontal
and vertical flips and a random crop of 224× 224 pixels. The
test folds are center cropped with 224× 224 pixels.

1The full set of images and labels are available in the python torchvision
library at https://pytorch.org/vision/stable/datasets.html

2Adience gender and age dataset is available for download at https:
//talhassner.github.io/home/projects/Adience/Adience-data.html

B. Parameters Assignments

Regarding the GA’s parameters, we set the population size
to C = 20 and the number of generations to G = 20
(as suggested in [19]). The mutation probability is set to
pm = 0.25 so that 1/4 of the generated offspring have
genetic diversity in relation to their parents. The probability
of changing genes’ base values is set to pc = 0.25 so that
the expected number of changed genes is at least 1 when this
mutation operator is selected to occur. The parameters ε and δ
are set to 0.15 and 0.2, respectively so that 85% of the noise
added to the base values are within a ±10% range of the
original values. As detailed in Section III-D, each mutation
(adding a gene, removing a gene, changing genes’ base
value) has the same probability to occur. We use stochastic
gradient descent for network weights optimization. For both
experiments on CIFAR-10 and Adience, each architecture is
trained for ηNAS = 10 epochs during ENAS phase. In the
sequence, we provided more details.

1) CIFAR-10 dataset: We use this dataset to validate dif-
ferent NetScore configurations. For the trade-off equation in
(3), one can assign the attenuation rates (∆a, ∆p, ∆m) and
coefficients (α, β, γ) according to the user preferences. The
experiments have been conducted considering four configura-
tions:
Default coefficients. This configuration uses the default

NetScore coefficients suggested by [15], i.e., α = 2,
β = 0.5, and γ = 0.5.

Lax trade-off. This configuration accepts a trade-off of 5%
of accuracy if it results in half the network complexities,
that is, the accuracy attenuation rate is set to ∆a = 5%
and the number of parameters and MACs attenuation rates
are set to ∆p = ∆m = 50%. We use (3) to translate these
deltas into coefficients α, β, and γ. First, we set α = 4
and make γ = β. Regarding these assignments, it follows
from (3) that β = γ = −2 log2(0.95) ≈ 0.15.

Strict trade-off. This configuration accepts to reduce the
network complexities by half but only if it results in a
1% loss of accuracy, that is, ∆a = 1% and ∆p = ∆m =
50%. Using the same reasoning, we set α = 4 and γ = β.
It follows from (3) that β = γ = −2 log2(0.99) ≈ 0.03.

Only accuracy. This configuration uses accuracy as a fitness
function and totally ignores the network complexities
during evolution.

After the search phase, the fittest architecture was trained
for ηref = 80 epochs. The learning rate is set to 0.025 for the
batch size of 512 images, and it is decayed by 1/3 every 30
epochs.

2) Adience dataset: In the search phase, we used the strict
trade-off parameters configuration for NetScore to evaluate the
candidate architectures. After that, each architecture obtained
for each fold is trained for ηref = 140 epochs. We use L2
normalization (weight decay 10−5 for all parameters except
batch normalization layers), Mixup [42] and Cutmix [43] (both
using parameter α = 0.8) to reduce overfitting. Mixup mixes
two samples by interpolating both the image and labels, while

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on September 17,2024 at 00:19:15 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20
Generations

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

−
a(

)

default
lax
strict
only acc.

(a)

0 5 10 15 20
Generations

0.0

2.5

5.0

7.5

10.0

12.5

Pa
ra

m
et

er
s−

p(

)

default
lax
strict
only acc.

(b)

0 5 10 15 20
Generations

0.0

0.5

1.0

1.5

M
AC

s−
m

(
)

default
lax
strict
only acc.

(c)

default lax strict only acc.
0.2

0.4

0.6

0.8

Ac
cu

ra
cy

−
a(

)

(d)
default lax strict only acc.

0

5

10

15

Pa
ra

m
et

er
s−

p(

)

(e)
default lax strict only acc.

0.0

0.5

1.0

1.5

2.0

M
AC

s−
m

(
)

(f)

Fig. 3. NetScore configurations’ performance on CIFAR-10. Each configuration was run 10 times. p(N) is scaled to millions of parameters and m(N) to
billions of MACs. (a), (b) & (c): fittest individuals’ average score (solid lines) and standard deviation (shaded areas). (d), (e) & (f): score distribution for the
refined final models.

in Cutmix patches are cut and pasted among training images
and labels are also mixed proportionally to the area of the
patches. Using a batch size of 16, the learning rate uses Cosine
Annealing with Warm Restarts schedule [44] with maximum
learning rate automatically defined as the steepest descent on
the training set [45]. We also show results where a pre-trained
model is fine tuned on Adience. The pre-training uses Images
of Groups Dataset [46] containing 28, 205 faces detected using
Facenet’s MTCNN [47] and the fine tuning uses the same
parameters with learning rate scaled by 1%.

C. Performance Assessment

For each benchmark dataset, we use the following assess-
ment schema:

a) CIFAR-10: The objective of this experiment is to
validate the trade-off configurations. We run RENNAS ten
times for each NetScore configuration. After the evolutionary
search, the accuracy of the final model is estimated with cross-
validation.

b) Adience: The experiments follow the 5-fold cross-
validation scheme according to [17]. RENNAS produces a
different neural architecture for each cross-validation iteration.
We average the refined fittest individuals’ scores.

In both scenarios, the final architectures are evaluated in
terms of accuracy, number of parameters and MAC operations.

V. RESULTS AND ANALYSIS

In this section, we present and analyze RENNAS experi-
mental outcomes. The NetScore trade-off analysis is provided
considering the default coefficients, lax, strict and only accu-
racy configurations on CIFAR-10. In the sequel, the outcomes

on gender recognition are presented detailing the architectures
found in the search phase and their respective performances.

A. NetScore trade-off analysis

Figure 3 shows that the NetScore with its default coefficients
are not useful as a fitness function. It falls into a pitfall,
trading a lot of accuracy to obtain a minimal network. As
a result, it was the only configuration that ended up with
an accuracy worse than the initial population. The lax trade-
off configuration was not that destructive. Notwithstanding, it
could not lead the initial population to better accuracy. The
other two configurations achieved accuracy improvement. As
expected, they have a small difference in accuracy, whereas
their difference in the number of parameters and MACs is
huge. The strict trade-off configuration imposes a selection
pressure that makes the population accuracy improve gener-
ation by generation and results in cheaper networks than the
accuracy-only configuration. Therefore, we can find efficient
neural architectures by leveraging NetScore with a suitable
configuration.

In order to obtain a better insight about the implicit accuracy
trade-off imposed by the NetScore’s coefficients, let us write
∆a as a function of α, β, and γ. Equation (3) defines an
infinite set of equivalent networks, i.e., individuals that have
the same fitness value. It follows from (3) that

∆a = 1− (1−∆p)
β/α(1−∆m)

γ/α (4)

Figure 4 shows the accuracy trade-off profiles for the afore-
mentioned NetScore configurations. We observe the values
of ∆a as a function of ∆p and ∆m according to (4), for

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on September 17,2024 at 00:19:15 UTC from IEEE Xplore. Restrictions apply.

0.0 0.2 0.4 0.6 0.8
Δp

0.0

0.2

0.4

0.6

0.8

Δ m
default

0.0

0.2

0.4

0.6

0.8

1.0

Δ a
(a)

0.0 0.2 0.4 0.6 0.8
Δp

0.0

0.2

0.4

0.6

0.8

Δ m

lax

0.0

0.2

0.4

0.6

0.8

1.0

Δ a

(b)

0.0 0.2 0.4 0.6 0.8
Δp

0.0

0.2

0.4

0.6

0.8

Δ m

strict

0.0

0.2

0.4

0.6

0.8

1.0

Δ a

(c)

Fig. 4. Accuracy trade-off profiles for all equivalent networks N1 and N2 such that Ω(N1) = Ω(N2), for 0 ≤ ∆p, ∆m < 1. (a) Default configuration: it
accepts a 90% accuracy attenuation rate in the worse-case scenario if ∆p = ∆m = 99%. (b) Lax configuration: it accepts ∆a = 29% if ∆p = ∆m = 99%.
(c) Strict configuration: it accepts ∆a up to 7%.

0 ≤ ∆p,∆m < 1. The default configuration has an unsuitable
accuracy trade-off because it would give the same NetScore to
accuracy attenuation rates varying from 0% (if ∆p = ∆m = 0)
to 90% (if ∆p = ∆m = 0.99) (Figure 4.(a)). The lax
configuration accepts an accuracy trade-off varying up to 29%
in the worst-case scenario if ∆p = ∆m = 0.99 (Figure 4.(b)).
This explains why this configuration cannot lead the initial
population to better accuracies. The strict configuration has a
much better profile because it would accept to trade at most 7%
of its accuracy in the worst-case scenario if ∆p = ∆m = 0.99
(Figure 4.(c)). Thus, the strict trade-off configuration will
likely avoid falling into the pitfall of minimizing the network
complexities at the expense of classification accuracy.

B. Gender recognition on unfiltered images

Table I shows the best architectures found by RENNAS
on gender recognition task in Adience dataset. The networks
have 20 to 38 layers. As one can see, the configuration of
groups of blocks differ from the original ResNets: both in
terms of number of filters per convolutional layer and in terms
of number of residual blocks per group. Moreover, RENNAS
found new ResNets with lower complexities than ResNet-
34 [8].

Table II shows the results in terms of accuracy, num-
ber of parameters and MACs for different CNNs proposed
for Adience, standard ResNet baselines and RENNAS best
architectures. Compared to the baseline ResNets, RENNAS
networks are better in terms of accuracy and cost. This shows
that, for gender recognition in Adience, tuning the architecture
is advantageous for performance and efficiency.

TABLE I
ARCHITECTURES FOUND BY RENNAS FOR ADIENCE.

Fold Xf = [..., (fi, bi), ...], where fi no. filters and bi no. blocks
#1 [(17, 1), (14, 2), (19, 1), (59, 5), (90, 5), (101, 1)]
#2 [(17, 1), (33, 1), (64, 3), (32, 1), (81, 5), (98, 2)]
#3 [(14, 1), (21, 1), (44, 5), (57, 2), (100, 5), (115, 1)]
#4 [(14, 3), (32, 3), (56, 1), (151, 4), (115, 4), (150, 3)]
#5 [(18, 1), (43, 1), (31, 3), (78, 3), (115, 3), (195, 2)]

We also see that the architectures found by RENNAS
show competitive performance to state-of-the-art results. We
report the classification accuracy as originally presented in the
papers [26]–[32]. However, some references do not specify the
number of parameters and MACs. For those, we compute these
indicators using Thop3. It is worth noting that some methods
in the literature use pre-processing procedures — like face
detection and alignment — and pre-trained networks on other
datasets. The cost of these extra procedures, as well as training
time, are not accounted in our evaluation.

Regarding classification accuracy, with no pre-processing
nor pre-training, RENNAS outperformed all the three ap-
proaches: [29], [31], [32]. Moreover, with pre-traning, REN-
NAS rivals [27] and is the overall second best approach losing
only to [30]. As for network complexities, the average number
of parameters is smaller than all of the compared approaches,
except [29] that achieves 87.1% accuracy with less than a
million parameters. Finally the number of MACs is better
than approaches by [26], [27], but similar or higher than the
remaining networks.

These results show that RENNAS is able to find networks
that are comparable to the state-of-the-art for the gender
recognition task. The architectures are found within 3 GPU
days each, which is low considering other ENAS proposals [9].
Considering the Adience gender recognition task, the models
are shown to be efficient (mainly in terms of number of
parameters), and competitive with other models for this task.

VI. CONCLUSION

In this paper, we introduced an evolutionary neural ar-
chitecture search algorithm to automatically obtain efficient
ResNet-based architectures. The proposed algorithm includes
a variable-length strategy for individual’s encoding into a
search space directly parameterized by the input image size. In
addition, custom mutation operators are presented to evolve the
ResNet-based architectures. Furthermore, this algorithm could

3Available at https://openbase.com/python/thop. Thop is an open source
package for computation of parameteres and MACs of PyTorch models.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on September 17,2024 at 00:19:15 UTC from IEEE Xplore. Restrictions apply.

TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON LITERATURE – ADIENCE DATASET.

Method Accuracy(a) Parameters(b) MACs(c) Pre-processing(d) Pre-training(e) Design
ResNet-18 baseline [8] 89.0% (+) 11 (+) 2.1 (+) No No

Hand-crafted

ResNet-34 baseline [8] 89.5% (+) 21 (+) 4.2 (+) No No
ResNet-50 baseline [8] 87.9% (+) 24 (+) 4.7 (+) No No

Agbo-Ajala and Viriri [30] 96.2% (−) 2.6 (+) 0.45 (−) Yes Yes
Zhou et al. [27] 93.2% (+) 24 (+) 4.7 (+) Yes No

Gurnani et al. [28] 91.8% (+) 74 (+) 21 (+) Yes Yes
Lapuschkin et al. [26] - GoogleNet [36] 91.7% (+) 4.0(f) (+) 1.5 (−) Yes Yes
Lapuschkin et al. [26] - CaffeNet [48] 90.6% (+) 40 (+) 0.70 (−) Yes Yes

Vu et al. [29] 87.1% (+) 0.90(f) (−) 0.051 (−) No No
Levi and Hassncer [31] 86.8% (+) 11 (+) 0.71 (−) No No

Ekmekji [32] 80.8% (+) 7.9 (+) 0.65 (−) No No

RENNAS

Fold

#1 94.0% 1.3 1.5

No No Automatic

#2 91.9% 1.3 2.8
#3 91.4% 1.6 0.73
#4 93.6% 4.2 0.99
#5 89.7% 2.6 1.9

Average 92.1% 2.2 1.6

Fold

#1 95.3% 1.3 1.5

No Yes Automatic

#2 92.6% 1.3 2.8
#3 93.3% 1.6 0.73
#4 95.2% 4.2 0.99
#5 91.6% 2.6 1.9

Average 93.6% 2.2 1.6
(a) Accuracy reported in the original papers. (b) Millions of parameters. (c) Billions of MACs. (d) Anything more sophisticated than resizing. (e)

Pre-training on other datasets. (f) Values reported in the original papers. The remainder of parameters and MACs were estimated using Thop3.

be easily modified to search for neural architectures based
on different block-based designs such as DenseNet [33] and
ResNeXt [34]. Future works could also compare it with other
NAS, using known search spaces like DARTS [49].

We demonstrated that the NetScore evaluation metrics can
be a useful fitness function, inasmuch as we established a
strict trade-off between accuracy and network complexities.
RENNAS is assessed on the challenging Adience gender
benchmark. When compared to state-of-the-art algorithms, it
presented better or competitive results on accuracy and net-
work complexities. Although we tested NetScore on an ENAS,
we hypothesise that it could also be applied to reinforcement-
learning-based NAS (as a reward signal) and to gradient-based
NAS (as a regularization component).

Other fitness functions could be designed, inspired by
the NetScore’s principles. It considers number of parameters
and MACs as indicators of network complexities, but others
might be more suitable to different applications (e.g. taking
training time into account). It is noteworthy that number of
parameters and MACs are hardware-independent indicators.
However, a specific application for edge devices with lim-
ited computational resources will certainly require hardware-
dependent indicators such as network size in memory and
computing time. In addition, one could also formulate the
trade-off on network performance and complexities as a multi-
objective problem and obtain a Pareto front instead of a single
solution. All of these new assessment metrics could also be
useful as fitness functions provided that a reasonable trade-off
between accuracy and model complexity is imposed. Here we
showed how to analyze the trade-off both theoretically and

experimentally, and we expect that similar analyses are useful
to other optimization applications.

ACKNOWLEDGMENT

This work was partially supported by Samsung Eletrônica
da Amazônia Ltda. under the Brazilian Informatics Law
#8.387/91.

REFERENCES

[1] K. Z. Haider, K. R. Malik, S. Khalid, T. Nawaz, and S. Jabbar,
“Deepgender: real-time gender classification using deep learning for
smartphones,” Journal of Real-Time Image Processing, vol. 16, no. 1,
pp. 15–29, Sep 2017.

[2] A. Rattani, N. Reddy, and R. Derakhshani, “Gender prediction from
mobile ocular images: A feasibility study,” in Proceedings of the 2017
IEEE International Symposium on Technologies for Homeland Security
(HST), 2017, pp. 1–6.

[3] M. M. Islam and J.-H. Baek, “Deep learning based real age and gender
estimation from unconstrained face image towards smart store customer
relationship management,” Applied Sciences, vol. 11, no. 10, 2021.

[4] F. Becerra-Riera, A. Morales-González, and H. Méndez-Vázquez, “A
survey on facial soft biometrics for video surveillance and forensic
applications,” Artificial Intelligence Review, vol. 52, no. 2, pp. 1155–
1187, Jun 2019.

[5] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
survey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, pp. 11–26, 2017.

[6] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional
neural networks: Analysis, applications, and prospects,” IEEE Transac-
tions on Neural Networks and Learning Systems, pp. 1–21, 2021.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV,
USA: IEEE, Jun. 2016, pp. 770–778.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on September 17,2024 at 00:19:15 UTC from IEEE Xplore. Restrictions apply.

[9] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A
Survey on Evolutionary Neural Architecture Search,” IEEE Transactions
on Neural Networks and Learning Systems, pp. 1–21, 2021, Conference
name: IEEE Transactions on Neural Networks and Learning Systems.

[10] T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture Search: A
Survey,” Journal of Machine Learning Research, vol. 20, no. 55, pp.
1–21, 2019.

[11] X. Zhou, A. K. Qin, Y. Sun, and K. C. Tan, “A survey of advances
in evolutionary neural architecture search,” in Proceedings of the 2021
IEEE Congress on Evolutionary Computation (CEC), 2021, pp. 950–
957.

[12] J. Huang, B. Xue, Y. Sun, and M. Zhang, “A flexible variable-length
particle swarm optimization approach to convolutional neural network
architecture design,” in 2021 IEEE Congress on Evolutionary Compu-
tation (CEC), 2021, pp. 934–941.

[13] F. E. Fernandes and G. G. Yen, “Particle swarm optimization of deep
neural networks architectures for image classification,” Swarm and
Evolutionary Computation, vol. 49, pp. 62–74, 2019.

[14] ——, “Automatic searching and pruning of deep neural networks for
medical imaging diagnostic,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 32, no. 12, pp. 5664–5674, 2021.

[15] A. Wong, “NetScore: Towards universal metrics for large-scale perfor-
mance analysis of deep neural networks for practical on-device edge
usage,” in Lecture Notes in Computer Science. Springer International
Publishing, 2019, pp. 15–26.

[16] A. Krizhevsky, G. Hinton, and others, “Learning multiple layers of
features from tiny images,” 2009, Publisher: Citeseer.

[17] E. Eidinger, R. Enbar, and T. Hassner, “Age and Gender Estimation
of Unfiltered Faces,” IEEE Transactions on Information Forensics and
Security, vol. 9, no. 12, pp. 2170–2179, Dec. 2014.

[18] Xin Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, Sep. 1999.

[19] Y. Xue, Y. Wang, J. Liang, and A. Slowik, “A self-adaptive mutation
neural architecture search algorithm based on blocks,” IEEE Computa-
tional Intelligence Magazine, vol. 16, no. 3, pp. 67–78, 2021.

[20] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Practical block-wise
neural network architecture generation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
2423–2432.

[21] M. Loni, S. Sinaei, A. Zoljodi, M. Daneshtalab, and M. Sjödin,
“Deepmaker: A multi-objective optimization framework for deep neural
networks in embedded systems,” Microprocessors and Microsystems,
vol. 73, p. 102989, 2020.

[22] M. Loni, A. Zoljodi, A. Majd, B. H. Ahn, M. Daneshtalab, M. Sjödin,
and H. Esmaeilzadeh, “Faststereonet: A fast neural architecture search
for improving the inference of disparity estimation on resource-limited
platforms,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, pp. 1–13, 2021.

[23] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[24] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in Proceedings of the 35th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80. PMLR,
10–15 Jul 2018, pp. 4095–4104.

[25] M. Javaheripi, M. Samragh, T. Javidi, and F. Koushanfar, “GeneCAI:
genetic evolution for acquiring compact AI,” in Proceedings of the 2020
Genetic and Evolutionary Computation Conference, ser. GECCO ’20.
New York, NY, USA: Association for Computing Machinery, Jun. 2020,
pp. 350–358.

[26] S. Lapuschkin, A. Binder, K.-R. Müller, and W. Samek, “Understanding
and comparing deep neural networks for age and gender classification,”
2017.

[27] Y. Zhou, H. Ni, F. Ren, and X. Kang, “Face and gender recognition
system based on convolutional neural networks,” in Proceedings of the
2019 IEEE International Conference on Mechatronics and Automation
(ICMA), 2019, pp. 1091–1095.

[28] A. Gurnani, K. Shah, V. Gajjar, V. Mavani, and Y. Khandhediya, “SAF-
BAGE: Salient approach for facial soft-biometric classification - age,
gender, and facial expression,” in Proceedings of the 2019 IEEE Winter
Conference on Applications of Computer Vision (WACV), 2019, pp. 839–
847.

[29] D.-Q. Vu, T.-T.-T. Phung, C.-Y. Wang, and J.-C. Wang, “Age and
gender recognition using multi-task CNN,” in 2019 Asia-Pacific Signal

and Information Processing Association Annual Summit and Conference
(APSIPA ASC), 2019, pp. 1937–1941.

[30] O. Agbo-Ajala and S. Viriri, “Deeply learned classifiers for age and
gender predictions of unfiltered faces,” The Scientific World Journal,
vol. 2020, pp. 1–12, Apr 2020.

[31] G. Levi and T. Hassncer, “Age and gender classification using convo-
lutional neural networks,” in Proceedings of 2015 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), 2015,
pp. 34–42.

[32] A. Ekmekji, “Convolutional neural networks for age and gender classi-
fication,” Stanford University, 2016.

[33] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 2261–2269.

[34] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 5987–5995.

[35] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[36] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 1–9.

[37] S. Kuruvayil and S. Palaniswamy, “Emotion recognition from facial
images with simultaneous occlusion, pose and illumination variations
using meta-learning,” Journal of King Saud University - Computer and
Information Sciences, 2021.

[38] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár,
“Designing network design spaces,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
10 428–10 436.

[39] M. Lin, Q. Chen, and S. Yan, “Network in network,” 2014.
[40] B. L. Miller, D. E. Goldberg et al., “Genetic algorithms, tournament

selection, and the effects of noise,” Complex systems, vol. 9, no. 3, pp.
193–212, 1995.

[41] D. Goldberg, Genetic Algorithms. Pearson Education, 2006.
[42] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond

empirical risk minimization,” in Proceedings of the 2018 International
Conference on Learning Representations, 2018.

[43] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Reg-
ularization strategy to train strong classifiers with localizable features,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 6023–6032.

[44] I. Loshchilov and F. Hutter, “SGDR: Stochastic Gradient Descent with
Warm Restarts,” in Proceedings of the 2017 International Conference
on Learning Representations, 2017.

[45] L. N. Smith, “Cyclical learning rates for training neural networks,” 2017.
[46] A. Gallagher and T. Chen, “Understanding images of groups of people,”

in Proceedings of the 2009 IEEE Conference on Computer Vision and
Pattern Recognition, 2009.

[47] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and
alignment using multitask cascaded convolutional networks,” IEEE
Signal Processing Letters, vol. 23, no. 10, pp. 1499–1503, 2016.

[48] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “CAFFE: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM International
Conference on Multimedia, ser. MM ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 675–678.

[49] M. Ruchte, A. Zela, J. Siems, J. Grabocka, and F. Hutter, “Naslib: A
modular and flexible neural architecture search library,” https://github.
com/automl/NASLib, 2020.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on September 17,2024 at 00:19:15 UTC from IEEE Xplore. Restrictions apply.

