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Abstract—A method to design plug-and-play (PnP) distributed
controllers for large-scale nonlinear systems represented by
interconnected Takagi–Sugeno fuzzy models with nonlinear
consequent is presented in this article. From the combina-
tion of techniques to use multiple fuzzy summations and to
explore the chordal decomposition of the interconnection graph
associated with the large-scale nonlinear system, sufficient con-
ditions for distributed stabilization are derived in terms of
linear matrix inequalities (LMIs). Conditions specially designed
to allow seamless subsystems plugging-in and unplugging opera-
tions from the large-scale system, without requiring the redesign
of all previously tuned distributed controllers, are provided.
The approach can be used together with fault detection and
isolation (FDI) systems, and also in the context of mixed dis-
tributed and decentralized controllers operating in a network
of interconnected systems. To illustrate the effectiveness of the
proposed PnP approach, a network of nonlinearly coupled and
heterogeneous Van der Pol oscillators is used in the numerical
experiments.

Index Terms—Chordal decomposition, distributed control,
large-scale systems (LSSs), plug-and-play (PnP) control,
Takagi–Sugeno (TS) fuzzy systems.

I. INTRODUCTION

LARGE-SCALE systems (LSSs) have attracted increasing
attention from researchers in the last decades, either

because of their extensive applications in various engineering
systems, such as communication networks, power systems,
mobile robots, industrial processes, transportation networks,
or due to the increase in the complexity of society support-
ing systems, thanks to the growing environmental challenges
and recent technological solutions based on advances in
communication, control, and automation [1], [2].

Manuscript received 13 January 2021; revised 8 June 2021; accepted
13 September 2021. Date of publication 29 September 2021; date of cur-
rent version 16 March 2023. This work was supported in part by Conselho
Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, under
Grant 307933/2018-0, and in part by Fundação de Amparo á Pesquisa do
Estado de Minas Gerais (FAPEMIG), Brazil, under Grant PPM-00053-17.
This article was recommended by Associate Editor L. Zhang. (Corresponding
author: Reinaldo Martínez Palhares.)

Rodrigo Farias Araújo is with the Department of Control and Automation
Engineering, Amazonas State University, Manaus 69055035, Brazil (e-mail:
rfaraujo@uea.edu.br).

Leonardo A. B. Torres and Reinaldo Martínez Palhares are with
the Department of Electronics Engineering, Federal University of Minas
Gerais, Belo Horizonte 31270010, Brazil (e-mail: leotorres@ufmg.br;
rpalhares@ufmg.br).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCYB.2021.3113518.

Digital Object Identifier 10.1109/TCYB.2021.3113518

In general, LSSs consist of a large number of interconnected
subsystems, which interact with each other and are spatially
distributed. Frequently, the problem of LSSs stability analy-
sis becomes very challenging because of information structure
constraints, uncertainty, and induced delays [1]. Although
there is no precise notion of large-scale, we consider a system
to be large scale when its dimensions are so large that
conventional techniques of modeling, analysis, control, and
computation fail to provide solutions with reasonable com-
putational effort such that it becomes necessary to use some
decomposition techniques to address the problem of system
stability analysis [3].

Particularly, the problem of taking into account information
on the constraints in the underlying interconnection structure
is related to the task of defining appropriate control strate-
gies consistent with the information flow between subsystems.
In this context, decentralized control structures have been
proposed in different scenarios as an alternative to this problem
(see surveys [4], [5] and references therein).

However, when the interconnections among subsystems are
very strong and the local controllers are designed not taking
this into account, the decentralized control may not be effective
to ensure suitable levels of performance for LSSs and, some-
times, proper subsets of local controllers that can stabilize the
overall network might not even exist [1]. Distributed control
schemes arise to overcome these issues, where local controllers
can make use of information on internal variables along with
those of the subsystems in the neighborhood of the locally
controlled subsystem to compute its control input, providing
greater reliability with respect to communication failures in
the network in comparison to centralized controllers, while still
being able to improve the overall system performance and sta-
bility in comparison to decentralized controllers [6]. Recently,
distributed schemes have been proposed in different appli-
cations, such as distributed event-triggering control [7], [8];
distributed states estimation network [9], [10]; and consensus
of multiagent systems [11].

The chordal decomposition [12] has been used to reduce
the complexity of sparse semidefinite programs as in [13],
where it is guaranteed near-linear time complexity for off-
the-shelf interior-point methods implemented in SeDuMi and
MOSEK. However, for the controller design, only linear
systems have been considered to specific applications, such
as distributed robustness analysis of interconnected uncertain
systems [14]; design of distributed control of interconnected
linear systems [15], [16]; and decentralized control design
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to weakly coupled linear systems [17]. Thus, to the best
of our knowledge, there exists a lack in the literature on
the possible advantages of using chordal decomposition to
obtain distributed controllers for LSSs composed of nonlinear
subsystems.

Another significant challenge in designing controllers
for LSSs is dealing with the presence of nonlinear
interconnections between subsystems. In general, only lin-
ear interconnections are considered in many works in the
current literature on this subject, or they are even some-
times considered as exogenous disturbances and altogether
neglected in the control design task. On the other hand,
when nonlinear interconnections are taken into consideration,
they usually have to satisfy a few particular conditions. For
instance, a Lipschitz condition was considered in [9] and [18]
and polynomial bounding conditions were assumed in [19]
and [20]. Uncertain norm-bounded interconnections were con-
sidered in [21] and [22], while a quadratic bounding was
used in [23], in the context of dynamic and static output
feedback, respectively. In [24], radial basis function neural
networks were employed to approximate the interconnection
functions.

Some of the previous papers mentioned in the last paragraph
consider the Takagi–Sugeno (TS) fuzzy framework [25], [26],
which allows the use of the Lyapunov stability theory and
linear matrix inequalities (LMIs) to obtain sufficient condi-
tions for stability analysis and control synthesis for nonlinear
systems. In this case, only the local nonlinearity of sub-
systems are represented by fuzzy rules, while the nonlinear
interconnections satisfy the aforementioned particular condi-
tions. Indeed, if each nonlinear interconnection is transformed
into a set of fuzzy rules, this can lead to the so-called
rule-explosion problem [27]. To avoid this problem, TS
fuzzy models with nonlinear consequent (N-TS fuzzy models)
can be used to represent interconnected systems when their
interconnections are sector-bounded nonlinear functions [28].
In a similar vein, Vu and Wang [29], [30] also used the TS
fuzzy model with polynomial consequent and sum-of-squares
(SOS)-based techniques.

Furthermore, LSSs can often have their structure changed
along time. Specific characteristics are desirable, as the abil-
ity to add and remove subsystems without the requirement
of shutting down the entire system (or part of it) for con-
trollers reparametrization. These ideas are called plug-and-play
(PnP) methods in the literature (for more details, see [31] and
references therein).

The PnP approach was initially introduced for fault detec-
tion and isolation (FDI), as in [32] and [33] that focus
on distributed FDI methods for discrete-time LSS. In the
context of the control design, in the last few years, some
PnP control strategies were published in [34] and [35],
in which the design of PnP decentralized model predictive
control (MPC) for discrete-time linear systems is investi-
gated, under the assumption of sufficiently weak couplings
among subsystems, that is, interconnections are considered
as disturbances. Decentralized control for linear subsystems
modeled in the frequency domain was proposed in [36].
Yang et al. [37] proposed a passive fault-tolerant control

scheme for nonlinear continuous-time interconnected systems
with interconnections satisfying a Lipschitz condition. In [38],
fault detection and distributed MPC for nonlinear LSSs
are addressed. The proposed controller is based on the
feedback linearization method, where nonlinearities are can-
celed in the state equations. More recently, the PnP control
design for discrete-time linear systems was proposed in [39]
and [40], where the decentralized controller and distributed
MPC based on the dissipativity approach are considered,
respectively.

Note that most of the papers address discrete-time linear
systems. Furthermore, those that deal with nonlinear systems
do not use TS fuzzy models to represent them. This is due
to the combination of membership functions of the subsys-
tems, which makes impossible to obtain a set of finite LMIs
conditions numerically tractable when the number of sub-
systems is large. Based on the previously discussed issues,
this article proposes a PnP distributed control strategy for the
stabilization of continuous-time large-scale nonlinear systems
represented by interconnected TS fuzzy models with nonlinear
consequents. Thus, the main contributions of this article are
summarized as follows.

1) Using the combination of techniques associated with
multiple fuzzy summations, chordal decomposition,
and block-diagonal Lyapunov functions, we extend
the design of distributed controllers for continuous-
time large-scale nonlinear systems described by
interconnected N-TS fuzzy systems in [28] to the case
where the number of subsystems is large, such that the
rule-explosion problem can be avoided.

2) We take advantage of the properties of chordal graphs
to propose a new PnP distributed control approach
for continuous-time large-scale nonlinear systems. In
contrast to methods used in [34] and [35], we deal
with continuous-time nonlinear systems with nonlinear
interconnections.

3) The presented PnP procedure is flexible and can also be
used in the design of mixed distributed and decentralized
controllers. Also, it can potentially be used in conjunc-
tion with any underlying FDI strategy, which makes it
novel with respect to the approaches in [32] and [33].

The remainder of this article is organized as follows. The
concepts of chordal graphs and interconnected N-TS fuzzy
models are introduced in Section II. In Section III, the dis-
tributed control problem is presented. In Section IV, new
stabilization conditions for LSSs are presented, while in
Section V, we propose a PnP operation procedure. Simulation
results are presented in Section VI. Finally, Section VII draws
the conclusion.

Notation: The symbol “�” denotes matrix blocks deduced by
symmetry. I denotes an identity matrix of appropriate dimen-
sion, while 1m×n and 0m×n denote m×n all ones and all zeros
matrices, respectively. For matrix X, X� is its transpose matrix
and X � 0 means that X ∈ S

n is an n × n symmetric positive-
definite matrix. diag(X1, X2) denotes a block-diagonal matrix
composed by X1 and X2. X = {Xij} stands a block matrix.
X[α, β] is a submatrix of X, obtained by choosing the blocks
of X, which lie in rows α and columns β; α and β are index
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sets of the rows and the columns of X, respectively. Symbol
◦ denotes the elementwise or Hadamard product of matrices.
The Y◦(−1) operator denotes the elementwise inverse operation
on the Y matrix elements. For an integer n > 1, we denote
In = {1, . . . , n} ⊂ N. Function arguments are omitted when
their meaning is straightforward. Notation related to chordal
graphs is based on [12] and [16].

II. PRELIMINARIES

A. Chordal Graphs

A graph G(V, E) is composed by a set of vertices V =
{1, 2, . . . , n} and a set of edges E = {(i, j) : i, j ∈ V}, with
each edge representing a connection from vertex i to vertex
j. A graph is undirected if it represents mutual interactions
between vertices, that is, (i, j) ∈ E ⇔ (j, i) ∈ E .

A path is a sequence of edges that connects a sequence
of distinct vertices. A graph is called connected if there is a
path between every pair of vertices. A clique is a subset of
vertices C ⊆ V that induces a complete subgraph GC(C, EC),
that is, (i, j) ∈ EC for any distinct vertices i, j ∈ C. If C is
not a subset of any other clique, then it is called a maximal
clique. The number of vertices in C is denoted by |C|. A cycle
of length k in a graph G is a set of pairwise distinct vertices
{1, 2, . . . , k} ⊆ V such that (k, 1) ∈ E and (i, i+1) ∈ E for i =
{1, 2, . . . , k − 1}. A chord is an edge between nonconsecutive
vertices on a path. In a cycle, a chord is an edge connecting
two nonadjacent vertices.

Definition 1 (Chordal Graph [12]): An undirected graph G
is called chordal if every cycle of length greater than 3 has at
least one chord.

Nonchordal graphs can always be extended to a chordal
graph by adding new edges to the original one. A chordal
extension can be efficiently generated from heuristics, such
as the minimum degree ordering followed by a symbolic
Cholesky factorization [12].

Definition 2 (Chordal Extension [12]): A chordal extension
of a graph G(V, E) is a chordal graph Ĝ(V, Ê), where E ⊆ Ê .

Given an undirected graph G, its corresponding adjacency
matrix AG = {aij} ∈ R

n×n is such that aij = 1, if (i, j) ∈ E ,
indicating a connection (edge) between vertices i and j, and
aij = 0, otherwise. Since the graph is undirected, the adjacency
matrix is symmetric. In addition, the neighborhood of the ith
vertex is defined by the set of vertices Ni = {j ∈ V : aij 
=
0}. The degree matrix of a graph DG = {dij} ∈ R

n×n is a
diagonal matrix that contains information on the number of
edges attached to each vertex, such that dii = ∑n

j=1 aij ∀i ∈ V;
and dij = 0, if i 
= j.

A vertex of an undirected graph is called simplicial if the
subgraph induced by its neighborhood Ni is complete, that
is, all its neighbors are connected to each other. An ordering
(or equivalently a numbering of the vertices) σ = 〈1, . . . , n〉
of an undirected graph G is a perfect elimination ordering if
each ith vertex, for i = {1, 2, . . . , n}, is a simplicial vertex in
the subgraph induced by the vertices {i, i + 1, . . . , n}. Let G
be a connected chordal graph. Given its perfect elimination
ordering, the set of maximal cliques � = {C1, C2, . . . , Ct} of
the graph can be identified in linear time [12].

B. Sparse Block Matrices and Chordal Decomposition

The occurrence of block matrices is almost inevitable when
investigating LSSs. Therefore, it is necessary an extension of
the Chordal Decomposition Theorem [41] for the case where
X is a block matrix, that is, X = {Xij}. This extension was
presented in [15]. However, we will define a more general class
of block matrices, which is necessary for the developments in
Sections IV and V.

Given the sets of vectors δ = {δ1, . . . , δN} and λ =
{λ1, . . . , λN}, with δi, λi ∈ R, i ∈ IN , a block matrix
X ∈ R

nφ×nx has (δλ)-partitioning with nφ = ∑N
i=1 δi and

nx = ∑N
i=1 λi, if each block Xij ∈ R

δi×λj ∀i, j ∈ IN . The space
of (δλ)-partitioned matrices X with sparsity pattern given by
a graph G(V, E) is

R
nφ×nx

δλ (E, 0) = {X ∈ R
nφ×nx :Xij = 0, if (i, j) /∈ Ē}

with Ē = E ∪ {(i, i) ∀i ∈ V}. For the case δ = λ, the previous
space is reduced to the one presented in [15], in the sense
that nφ = nx. For an undirected graph G(V, E), the space of
λ-partitioned symmetric matrices with sparsity pattern E is
defined as

S
nx
λ (E, 0) = {

X ∈ S
nx : Xij = 0, if (i, j) /∈ Ē}.

If λi = 1 ∀i ∈ IN , the space defined above will be denoted by
S

nx(E, 0).
The following lemma extends the chordal decomposition

theorem to the case of block matrices.
Lemma 1 (Block-Chordal Decomposition Theorem [17]):

Let G(V, E) be a chordal graph with t maximal cliques
{C1, C2, . . . , Ct}. Given a partition λ = {λ1, λ2, . . . , λN} and
nx = ∑N

i=1 λi, then, X ∈ S
nx
λ (E, 0) is a positive semidefinite

matrix if and only if there exist positive semidefinite matrices
Xk ∈ S

|Ck|λ , with |Ck|λ = ∑
i∈Ck

λi, for k ∈ It such that

X =
t∑

k=1

(ECk)
�XkECk

where ECk = E[Ck,V] ∈ R
|Ck|λ×nx ∀k ∈ It, are blockwise

principal submatrices of E = diag(Iλ1 , . . . , IλN ).
Remark 1: The chordal decomposition theorem plays an

important role in the context of sparse semidefinite problems
since if an LMI constraint has a chordal sparsity pattern, then it
can be equivalently replaced by a set of LMI constraints using
matrices with smaller dimensions, together with a set of equal-
ity constraints. Therefore, according to [13], [42], and [43],
this theorem brings substantial computational enhancement to
solving large sparse semidefinite problems, especially if the
numbers of vertices in maximal cliques are small.

Remark 2: Note that the block-chordal decomposition the-
orem is only applied when the graph is chordal, and if it is
nonchordal its chordal extension Ĝ(V, Ê) (see Definition 2) is
used instead to find the set of maximal cliques in Lemma 1.
In addition, the application of Lemma 1 generates a set of
equality constraints associated with overlapping elements in
the graph, that is, blocks in Xk that correspond to a vertex can
appear in more than one constraint when this vertex belongs
to more than one maximal clique.
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To eliminate equality constraints, we define matrices that
equally divide the respective repeated block between the
constraints to which it belongs. For this purpose, we define
Z = {zij} ∈ S

N(Ê, 0), considering the set of maximal cliques
of the graph � = {C1, C2, . . . , Ct}, such that

{
zii = number of repetitions of vertex i in �

zij = number of repetitions of edge (i, j) in �.
(1)

Thus, a matrix of averaging factors for decomposing the
overlapping elements can be defined as follows:

V = {
Vij
}
, with Vij =

{
1
zij

× 1λi×λj , if zij 
= 0

0λi×λj , otherwise

such that Xk = V[Ck, Ck] ◦ X[Ck, Ck] in Lemma 1.
Note that when λi = 1 ∀i ∈ IN , Lemma 1 is reduced to the

traditional chordal decomposition theorem [41]. In this article,
to each element in a given partition corresponds the order of
the associated subsystem, that is, λi = nxi .

C. Interconnected N-TS Fuzzy Models

When classical TS fuzzy models [25] are used to represent
complex dynamical systems, an explosion in the number of
fuzzy rules may occur due to the possible presence of a large
number of nonlinearities. Stability analysis and control syn-
thesis for such TS fuzzy models are often very challenging
because of the high computational complexity usually associ-
ated with a large number of rules. Although the fuzzy local
approximation method can be employed to obtain nonexact
TS fuzzy models with fewer fuzzy rules, the designed control
laws may not guarantee the stability of the original nonlinear
system [27].

Therefore, N-TS models, that is, TS fuzzy models with
nonlinear consequent, have been employed to avoid using an
excessive number of fuzzy rules while increasing the model
accuracy. In this sense, Dong et al. [44] proposed adding
sector-bounded functions to the traditional TS fuzzy models,
resulting in new models with nonlinear consequent. By using
this approach, the following continuous-time and input affine
nonlinear system:

ẋ(t) = f (x(t)) + g(x(t))u(t)

where f (·) and g(·) are smooth nonlinear functions, such that
x(t) = 0 and u(t) = 0 are the equilibrium conditions for the
nonlinear system, which can be represented as an N-TS fuzzy
model

ẋ(t) =
r∑

k=1

ςk(z(t))
[
Akx(t) + Bku(t) + Gkϕ(x(t))

]
(2)

where r is the number of fuzzy rules, z(t) ∈ R
p is the

premise variables vector, and ςk(z(t)) the membership func-
tions, x(t) ∈ R

nx is the state vector, u(t) ∈ R
nu is the

control input vector, ϕ(x(t)) ∈ R
nϕ is a vector of sector-

bounded nonlinear functions, and Ak ∈ R
nx×nx , Bk ∈ R

nx×nu ,
and Gk ∈ R

nx×nϕ are constant matrices describing the local
dynamics of the system.

As a result, both conservativeness and computational com-
plexity for stability analysis and control design can be reduced

when using N-TS fuzzy models for continuous-time [44], [45]
and discrete-time systems [46], [47]. N-TS fuzzy models were
used for the first time to represent interconnected nonlinear
systems in [28], with the sector-bounded nonlinear functions
representing interconnections among subsystems in a network.

Following this approach, consider that each ith subsys-
tem in a continuous-time large-scale nonlinear system with
N heterogeneous interconnected nonlinear subsystems, whose
nonlinear interconnections are associated with an undirected
graph G(V, E) can be described as follows:

ẋi(t) = fi(xi(t)) + gi(xi(t))ui(t) +
∑

j∈Ni

hij
(
xi(t), xj(t)

)

where i ∈ IN , xi(t) ∈ R
nxi is the state vector for the ith

subsystem, and ui(t) ∈ R
nui is the ith control input vector.

An interconnected N-TS fuzzy model can then be obtained
using the same strategy in [44], by considering that nonlinear
interconnections among subsystems are represented by nonlin-
earities ϕ in (2), such that the ith inferred N-TS fuzzy model
is given by

ẋi(t) =
ri∑

l=1

ς l
i (zi(t))

⎡

⎣Al
iixi(t) + Bl

iui(t) +
∑

j∈Ni

Al
ijxj(t)

+ Gl
i

∑

j∈Ni

ϕij
(
xi(t), xj(t)

)
⎤

⎦ (3)

where i ∈ IN and l ∈ Iri , with ri the number of rules,
zi(t) ∈ R

pi is the premise variables vector associated to the ith
subsystem, ϕij(·) ∈ R

nϕij are sector-bounded functions describ-
ing the nonlinear interconnections between the ith and jth
subsystems, and Al

ii, Bl
i, Al

ij, and Gl
i are known constant local

matrices with appropriate dimensions.
Remark 3: Note that in the general framework being

presented so far, each function ϕij in (3) may have a differ-
ent dimension nϕij , which would lead to difficulties in writing
the equations compactly. Thus, from now on, without loss of
generality and to maintain a concise development, we will
consider ϕij ∈ R.

By considering real-valued nonlinear functions ϕij, we can
define decentralized vectors of nonlinearities

φi(x(t)) = [
ϕij1 ϕij2 · · · ϕijdii

]�
(4)

such that each φi(x(t)) ∈ R
dii is formed by stacking the

nonlinear functions ϕijκ , with jκ ∈ Ni, κ ∈ Idii . This also pre-
vents possible numerical problems in the design conditions,
since if the ith and jth subsystems are not interconnected,
the nonlinearity ϕij does not exist and it should not be taken
into consideration. In addition, since each function ϕij is sec-
tor bounded, each decentralized vector of nonlinearities φi(x)

also satisfies a corresponding sector property, that is, there
exists a given matrix �i = [

i1 i2 · · · iN
] ∈ R

dii×nx ,
nx = ∑N

i=1 nxi , with ij ∈ R
dii×nxj ∀j ∈ IN , and ij = 0

∀j /∈ Ni, such that the following inequality holds:

φi(x)��−1
i

(
φi(x) − �ix

) ≤ 0 (5)
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Fig. 1. Distributed control structure. Dashed arrows (gray) between local
controllers indicate that the states or control inputs of subsystems in the neigh-
borhood are sent to a local controller to compute the control signal for its
corresponding subsystem.

where �i ∈ R
dii×dii is any positive-definite diagonal matrix,

which is used here to add degrees of freedom to the above
inequality.

III. DISTRIBUTED CONTROL PROBLEM

It is possible to explore the flexibility in the control design
provided by N-TS fuzzy models together with the advantages
of a distributed control approach in the design of a nonlin-
ear control law for the LSS represented by (3). This control
strategy is distributed in the sense that local controllers can
make use of data from their own local subsystem internal
variables and from their neighboring subsystems in the compu-
tation of their control actions, as shown in Fig. 1. Particularly,
we consider that only one undirected graph G(V, E) represents
the interconnections either among subsystems or among local
controllers in the control layer.

Consider the following distributed control law for the ith
subsystem:

ui(t) =
ri∑

l=1

ς l
i (zi(t))K

l
ixi(t) +

∑

j∈Ni

Fijxj(t) + �iφi(x(t)) (6)

where Kl
i ∈ R

nui×nxi , Fij ∈ R
nui×nxj , �i ∈ R

nui×dii , that is, �i =[
�ij1 �ij2 · · · �ijdii

]
, with jκ ∈ Ni, κ ∈ Idii , following the

previous definition of φi(x(t)) in (4).
The following assumption is considered in order to have a

consistent control law in (6).
Assumption 1: The state vector xj(t) is available for the ith

subsystem as well as the nonlinear functions ϕij(xi, xj) are
known for the ith subsystem, if j ∈ Ni.

Remark 4: Similar to [44], the nonlinearities φi(x(t))
were incorporated in the nonlinear distributed control
law (6). This a priori additional information aims to
improve the system response by reducing conservativeness
in the controller synthesis procedure. The same approach

has been used in several works on N-TS fuzzy systems
either for continuous-time [44], [45] or for discrete-time
systems [46], [47].

Then, substituting (6) in (3) leads to the following closed-
loop subsystem:

ẋi(t) =
ri∑

k=1

ri∑

l=1

ςk
i (zi(t))ς

l
j (zi(t))

(
Ak

ii + Bk
i Kl

i

)
xi(t)

+
∑

j∈Ni

ri∑

k=1

ςk
i (zi(t))

(
Ak

ij + Bk
i Fij

)
xj(t)

+
ri∑

k=1

ςk
i (zi(t))

(
Gk

i 1�
dii

+ Bk
i �i

)
φi(x(t)). (7)

It is known that the Lyapunov inequalities for linear systems
admit block-diagonal solutions [48]. Then, we will use a
quadratic block-diagonal Lyapunov function candidate for sta-
bility analysis of the N interconnected closed-loop subsystems
in (7)

V(x(t)) =
N∑

i=1

xi(t)
�Pixi(t) = x(t)�PNx(t) (8)

where x(t) = [
x1(t)� x2(t)� · · · xN(t)�

]�
and

PN = diag(P1, . . . , PN), with Pi = P�
i � 0 ∀i ∈ IN .

Based on the previous discussions, this article proposes
solutions to the following problems.

Problem 1: The determination of sufficient conditions for
designing distributed nonlinear controllers (6) for the stabi-
lization of closed-loop subsystems (7) that are the constituents
of a large-scale nonlinear system.

Problem 2: The determination of sufficient conditions for
the distributed stabilization of large-scale nonlinear systems
from a PnP approach, that is, considering that subsystems
can be seamless added or removed from the network.

IV. DISTRIBUTED STABILIZATION OF

LARGE-SCALE SYSTEMS

The next theorem provides sufficient conditions to ensure
that the origin of the large-scale nonlinear system is asymp-
totically stable. As the theorem addresses all subsystems of
the entire network, the notation of multi-index presented in
the Appendix will be used.

Theorem 1: Let the matrices �i in (5) be given ∀i ∈ IN . The
continuous-time large-scale nonlinear system represented by
the undirected graph G(V, E) and formed by N interconnected
closed-loop subsystems given in (7) is stable if there exist
matrices Qi � 0, diagonal matrices �i � 0, and any matrices
R

ιi,2
i , Sij, and Ti ∀i ∈ IN ∀ιi,2 ∈ Iri , and ∀j ∈ Ni, satisfying

the following constraint:

N∏

i=1

⎛

⎝
ri∑

ιi,1=1

ri∑

ιi,2=1

ς
ιi,1
i ς

ιi,2
i

⎞

⎠
[
� �

� − 2	N

]

≺ 0 (9)

where 	N = diag(�1, . . . , �N), � = [�ij] ∈ S
nx
λ (E, 0), and

� = [�ij] ∈ R
nφ×nx

δλ (E, 0), with δ = {d11, . . . , dNN}, λ =
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{nxi , . . . , nxN }, and

�ii = A
ιi,1
ii Qi + B

ιi,1
i R

ιi,2
i + (A

ιi,1
ii Qi + B

ιi,1
i R

ιi,2
i )�

�ij = A
ιi,1
ij Qj + Qi(A

ιj,1
ji )� + B

ιi,1
i Sij + S�

ji (B
ιj,1
j )�

�ii =
(

B
ιi,1
i Ti + G

ιi,1
i 1�

dii
�i

)� + iiQi

�ij = ijQj.

Then, the control gains in (6) are recovered from:

K
ιi,1
i = R

ιi,1
i Q−1

i , �i = Ti�
−1
i and Fij = SijQ

−1
j .

Proof: If inequality (9) holds, taking R
ιi,1
i = K

ιi,1
i Qi,

Ti = �i�i, and Sij = FijQj ∀i ∈ IN ∀ιi,1 ∈ Iri , and ∀j ∈ Ni;
and applying the congruence transformation diag(PN,	−1

N ),
leads to the inequality:

N∏

i=1

⎛

⎝
ri∑

ιi,1=1

ri∑

ιi,2=1

ς
ιi,1
i ς

ιi,2
i

⎞

⎠
[
�̄ �

�̄ − 2	−1
N

]

≺ 0 (10)

with

�̄ii = Pi
(
A

ιi,1
ii + B

ιi,1
i K

ιi,2
i

)+ (
A

ιi,1
ii + B

ιi,1
i K

ιi,2
i

)�
Pi

�̄ij = PiA
ιi,1
ij +

(
A

ιi,2
ji

)�
Pj + PiB

ιi,1
i Fij + F�

ji

(
B

ιi,2
j

)�
Pj

�̄ii =
(

B
ιi,1
i �i + G

ιi,1
i 1�

dii

)�
Pi + �−1

i ii

�̄ij = �−1
i ij.

Premultiplying and postmultiplying (10) by
[
x� φ(x)�

]

and its transpose, and considering (7), one has that

2
∑

i∈IN

ẋi(t)
�Pixi(t) − 2

∑

i∈IN

φi(x)��−1
i

(
φi(x) − �ix

)
< 0.

(11)

Also, from (8), V̇(x) = 2
∑N

i=1 ẋi(t)�Pixi(t).
Note that since each nonlinearity φi(x) verifies a sector con-

dition as in (5), inequality (11) defines an upper bound for
the time derivative of the Lyapunov function (8), implying
V̇(x) < 0 ∀x 
= 0. This completes the proof.

Remark 5: Due to the multiple summations of continuous
membership functions in (9), there would be an uncountable
number of inequalities to be checked in Theorem 1, despite
the finite number of matrices used in the system description.
There are different ways to relax the constraints with multiple
summations to generate a finite number of LMI constraints
(see Lemma 2 in the Appendix). However, when the number
of subsystems N is large, these methods become impractical
since a large number of numerically intractable constraints are
generated. This happens due to a large number of combinations
between the subsystems’ membership functions. To overcome
this problem, in [28], we incorporated the membership func-
tions into the state vector so that only one LMI constraint was
generated. Unfortunately, this approach has the drawback that
the higher the number of subsystems the greater the order,
which makes the solution nonscalable for LSSs.

Remark 6: As in [28, Remark 1], three different struc-
tures of control can be obtained trough modifications in (6),
as follows: 1) decentralized control (�i = 0nui×dii and

Fij = 0nui×nxj
); 2) linear (�i = 0nui×dii); and 3) nonlinear

(Fij = 0nui×nxj
) distributed control.

In this article, we use the chordal decomposition theorem
to divide constraint (9) into smaller constraints that take into
account only the subsystems that influence each other in the
network. Such information is obtained from the set of max-
imal cliques by which the graph associated with the LSS is
divided. After that, the fuzzy relaxation in Lemma 2 can be
used to generate a finite number of LMI constraints, avoiding
the issues discussed in Remark 5.

Constraint (9) in Theorem 1 presents block matrices that
depend not only on the state but also on the nonlinearity.
Hence, auxiliary matrices for decomposing the overlapping
elements related to nonlinearities are required. Based on this,
we define the vector γi = (Z[Ni, i])◦(−1) ∈ R

dii , which is
composed by the inverses of the elements in the ith column
of matrix Z defined in (1), and contained in the neighbor-
hood Ni of the ith subsystem. Thus, the matrices of averaging
factors for decomposing the overlapping elements related to
nonlinearities are defined as follows:

W = [
Wij
]
, with Wij = γi ⊗ 1�

nj

Y = [
Yij
]
, with Yij =

{
diag(γi), if i = j
0dii×djj, otherwise.

From Lemma 1 (block-chordal decomposition lemma), the
next theorem provides sufficient conditions to ensure that the
origin of the large-scale nonlinear system is asymptotically
stable.

Theorem 2: Let the matrices �i in (5) be given ∀i ∈ IN .
The continuous-time large-scale nonlinear system represented
by the undirected graph G(V, E), with a chordal extension
that has maximal cliques {C1, C2, . . . , Ct}, and composed by N
interconnected closed-loop subsystems given in (7), is stable
if there exist matrices Qi � 0, diagonal matrices �i � 0, and
any matrices R

ιi,2
i , Sij, and Ti ∀i ∈ IN ∀ιi,2 ∈ Iri , and ∀j ∈ Ni,

satisfying (12) ∀k ∈ It

∏

i∈Ck

⎛

⎝
ri∑

ιi,1=1

ri∑

ιi,2=1

ς
ιi,1
i ς

ιi,2
i

⎞

⎠
[
�k �

�k −2	k

]

≺ 0 (12)

where

�k = ECk(V ◦ �)E�
Ck

�k = EEk(W ◦ �)E�
Ck

	k = EEk(Y ◦ 	N)E�
Ek

with �, �, and 	N given in Theorem 1, ECk = E[Ck,V] with
E = diag(Inx1

, . . . , InxN
), and

EEk ∈ R
|Ek|×nφ ,

(
EEk

)
ij =

{
1, if Ek(i) = E(j)
0, otherwise

where Ek(i) and E(j) are the ith and jth edges in GCk and G,
respectively, sorted in the natural ordering.

Then, the control gains in (6) are recovered from:

K
ιi,1
i = R

ιi,1
i Q−1

i , �ij = Tij�
−1
ij and Fij = SijQ

−1
j .

Proof: From Lemma 1, premultiplying and postmultiply-
ing (12) by diag(E�

Ck
, E�

Ek
) and its transpose, and applying the
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summation on k ∈ It, shows that constraints (12) are equiva-
lent to constraint (9) in Theorem 1. The rest of the proof is a
direct consequence of the proof of Theorem 1.

Remark 7: Note that if the number of maximal cliques
in the graph is equal to one and it actually represents
interconnections in the large-scale system, that is, the graph
is complete, then Theorem 2 is reduced to Theorem 1.
Furthermore, the chordal extension of the graph is used only to
obtain the set of maximal cliques and indicates what subsys-
tems participate in each constraint, while the original graph
is taken into account to assemble the block matrices for
each constraint. Thus, this procedure becomes a solution to
Problem 1.

Remark 8: The constraints (12) in Theorem 2 are nonlin-
ear ones, such that the use of Lemma 2 (see the Appendix)
is necessary to obtain a finite number of LMI constraints.
Interestingly, the smaller the number of vertices in maxi-
mal cliques, the smaller the number of combinations among
membership functions. Hence the complexity is reduced with
respect to Theorem 1.

Remark 9: The main advantage of Theorem 2 over
Theorem 1 is the possibility of dealing with a large number of
interconnected subsystems by taking into account the sparsity
of the graph that represents the LSS. The higher the sparsity
of the graph, the smaller the size of the LMI constraints to
be considered. A graph with high sparsity means that it has
a large number of maximal cliques with a small number of
vertices in each clique.

V. PLUG-IN-PLAY OPERATION

In the previous section, we derived sufficient conditions
to design distributed controllers from properties of chordal
graphs, which will be used as starting point to derive proper
PnP operations for interconnected subsystems. In this section
we present a framework for updating the distributed controllers
when the subsystems are added or removed from the LSS.
The goal is to preserve the asymptotic stability for the new
closed-loop LSS.

The developments in Sections V-A and V-B show that
the proposed approach is independent of any underlying FDI
system that could, in principle, be designed separately, while
providing a definite solution to Problem 2.

A. Plugging-in Operation

Consider the plug-in of a new nonlinear subsystem SN+1
described by (3) with matrices Al

N+1,N+1, Al
N+1,j, Bl

N+1, Gl
N+1∀j ∈ NN+1. In particular, NN+1 identifies the subsystems that

are directly coupled to SN+1, that is, its neighborhood.
Fig. 2 depicts the plugging-in operation of the 6th subsys-

tem (S6) to an LSS composed by five subsystems. The graph
associated to the new LSS generated after adding subsys-
tem S6 is denoted by G+(V+, E+), where V+ = V ∪ {N + 1}
and E+ = E ∪ {(N + 1, j)j∈NN+1}. Note that subsystems Sj

∀j ∈ NN+1, have the new neighbor SN+1.
The goal of the plugging-in operation is to guarantee

closed-loop stability of LSS without requiring to redesign all
subsystems’ controllers. According to the demonstration in

Fig. 2. Plugging-in operation of the 6th subsystem (S6). Dashed arrow (red)
is the new connection generated by adding the new subsystem.

Section IV, each clique of the chordal extension of the graph
represents a part of the LSS and is related to others through
overlapping elements, that is, subsystems that belong to more
than one clique. Thus, the overall stability of the LSS is guar-
anteed from the local stability of cliques. After that, if a new
subsystem is added to the LSS, it is still necessary to ensure
the cliques’ stability to which that subsystem and its neighbor-
hood belong, that is, the stability of those cliques that contain
the subsystems in the set N+

N+1 = {N + 1} ∪ NN+1.
Remark 10: Note that since Fij = SijQ

−1
j in (6), the neigh-

borhood of the newly added (N + 1)th subsystem will have
their controllers and respective block in the Lyapunov matrix
updated. If (6) was used, it would require updating the blocks
of the Lyapunov matrix related to the subsystems connected to
the new subsystem. If this is necessary, constraints regarding
the cliques that contain these subsystems should be analyzed
again. This would occur in a chain and all constraints would
have to be eventually analyzed only to find the new blocks of
the Lyapunov matrix, and this would hinder one of the main
advantages of the PnP approach. To overcome this problem,
we consider specifically in the PnP approach that Fij = 0nui×nxj
in (6), such that the distributed control law for every ith
subsystem in the LSS is simplified in this case to

ui(t) =
ri∑

l=1

ς l
i (zi(t))K

l
ixi(t) + �iφi(x(t)). (13)

The next theorem provides sufficient conditions to ensure
that the origin of an asymptotic stable large-scale nonlinear
system, whose subsystems are controlled using (13), remains
asymptotically stable when it is subject to the plugging-in
operation of a new subsystem as described above.

Theorem 3 (Plugging-In): Let the matrices �i in (5) be
given ∀i ∈ N+

N+1 = {N + 1} ∪ NN+1. The plugging-in oper-
ation of a nonlinear subsystem N + 1, controlled using (13),
to a previously asymptotically stable continuous-time large-
scale nonlinear system, whose subsystems are also controlled
using (13) with gains designed using Theorem 2 (with Sij = 0),
leading to the new undirected graph G+(V+, E+) with a
corresponding chordal extension that has maximal cliques
{C1, C2, . . . , Ct}, remains asymptotically stable if there exist
matrices Qi � 0, diagonal matrices �i � 0, and any matrices
R

ιi,2
i and Ti, i ∈ N+

N+1, and ∀ιi,2 ∈ Iri , satisfying (14) ∀k such
that N+

N+1 ∩ Ck 
= ∅
∏

s∈Ck

⎛

⎝
rs∑

ιs,1=1

rs∑

ιs,2=1

ς
ιs,1
s ς

ιs,2
s

⎞

⎠
[
�k �

�k −2	k

]

≺ 0 (14)
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where �k, �k, and 	k are given as in Theorem 2 (replacing
Sij = 0 in all expressions), while considering G+(V+, E+)

instead of G(V, E).
Then, the control gains in (13) for the added subsystem and

the subsystems in its neighborhood are recovered from:

K
ιi,1
i = R

ιi,1
i Q−1

i and �ij = Tij�
−1
ij .

Proof: Since the closed-loop LSS prior to the plugging-in
operation is asymptotically stable and its subsystems’ con-
trollers were designed from Theorem 2 with Sij = 0 ⇒
Fij = 0nui×nxj

, LMI constraint (14) takes only into account

cliques such that N+
N+1 ∩ Ck 
= ∅, and from Theorem 2, the

already known controllers of other subsystems are solutions
to cliques Ck such that N+

N+1 ∩ Ck = ∅. Thus, the solu-
tion for (14) together with the previously known controllers
are also solutions to Theorem 2, when Remark 10 and the
LSS with the associated graph G+(V+, E+) are taken into
consideration.

Remark 11: Note that in Theorem 3, if s /∈ N+
N+1 in (14),

the controller of the referred subsystem should not be mod-
ified, and the controller already known is used to build the
respective LMI constraint.

Remark 12: The redesign of controllers in the neighbor-
hood of the (N + 1)th subsystem is necessary because such
subsystems can become part of a new clique. Thus, the matrix
blocks corresponding to them are overlapping elements that
must be divided between the constraints formed by the cliques
(see Section IV).

B. Unplugging Operation

The unplugging operation consists in removing a subsys-
tem from the network. This scenario is mainly due to a
failure in a subsystem. Consider the unplugging of a nonlin-
ear subsystem Sρ with ρ ∈ IN , described by (3). The graph
associated to new LSS generated after removing the ρth sub-
system is denoted by G−(V−, E−), where V− = V − {ρ} and
E− = E − {(ρ, j)j∈Nρ

} + {(j, ρ)j∈Nρ
}.

Similar to the plugging-in case, the goal of unplugging oper-
ation is to guarantee that the LSS will remain asymptotically
stable without requiring the redesigning of all subsystems’
controllers. However, there are a few differences between these
operations. For example, removing a system from the LSS can
lead to the creation of various smaller LSSs. This happens
when the resulting undirected graph associated with the new
LSS is not connected. Interestingly, the result below is generic
enough to also be utilized in this situation.

As discussed previously, the overall stability of the LSS is
guaranteed from the local stability of its cliques. Therefore,
if a subsystem is removed from the LSS, it is only necessary
to ensure the cliques’ stability to which the subsystems in its
former neighborhood Nρ belong. In addition, only the local
gains K

ιi,1
i ∀i ∈ Nρ , should be updated since removing a sub-

system changes the degrees of the vertices that belong to the
set Nρ and the resulting overlap of the cliques.

The next theorem provides sufficient conditions to ensure
that the origin of the large-scale nonlinear system is asymp-
totically stable when it is subject to unplugging of a subsystem.

Theorem 4 (Unplugging): Let the matrices �i in (5) be
given ∀i ∈ Nρ . The unplugging operation of a nonlinear
subsystem ρ, controlled using (13), from a previously asymp-
totically stable continuous-time large-scale nonlinear system,
whose subsystems are also controlled using (13) with gains
designed using Theorem 2 (with Sij = 0), leading to the new
graph G−(V−, E−) with a chordal extension that has maximal
cliques {C1, C2, . . . , Ct}, remains asymptotically stable if there
exist matrices Qi � 0, and any matrices R

ιi,2
i ∀i ∈ Nρ , and

∀ιi,2 ∈ Iri , satisfying (15) ∀k such that Nρ ∩ Ck 
= ∅
∏

s∈Ck

⎛

⎝
rs∑

ιs,1=1

rs∑

ιs,2=1

ς
ιs,1
s ς

ιs,2
s

⎞

⎠
[
�k �

�k −2	k

]

≺ 0 (15)

where �k, �k, and 	k are given as in Theorem 2 (replacing
Sij = 0 in all expressions), while considering G−(V−, E−)

instead of G(V, E).
Then, the local control gains in (13) for the subsystems in

the neighborhood of the removed ρth subsystem are recovered
from

K
ιi,1
i = R

ιi,1
i Q−1

i .

Proof: Since the closed-loop LSS prior to the unplugging
operation is asymptotically stable and its subsystems’ con-
trollers were designed from Theorem 2 with Sij = 0 ⇒
Fij = 0nui×nxj

, LMI constraint (15) takes only into account
cliques such that Nρ ∩ Ck 
= ∅, and from Theorem 2,
the already known controllers of others subsystems are
solutions to cliques such that Nρ ∩ Ck = ∅. Thus, the solu-
tion for (15) together with the already known controllers
are also solutions to Theorem 2, when Remark 10 and
the LSS with associated graph G−(V−, E−) are properly
considered.

Remark 13: Similar to the plugging-in case, if s /∈ Nρ

in (15), the controller already known for the sth subsystem
is used to build the respective LMI constraint.

Remark 14: Both plugging-in and unplugging operations
can be used in the design of mixed distributed and
decentralized controllers for the LSS. Indeed, decentral-
ized controllers will be obtained for the subsystems that
should be updated after these operations by just keeping
the corresponding matrices Ti = 0 in all the expres-
sions in Theorem 3 (plugging-in) and in Theorem 4
(unplugging), while assuming that feasible solutions will be
found.

VI. COUPLED VAN DER POL OSCILLATORS

In this section, we use the coupled Van der Pol oscillators
to illustrate the effectiveness of the proposed methodolo-
gies. Such oscillators have been used to represent oscillatory
systems in many diverse areas, from electronic oscillators to
biological rhythms, since they capture the general concept of
relaxation oscillators [49].

Inspired by [38], where linear interconnections are con-
sidered, a network of Van der Pol oscillators composing a
continuous-time LSS is considered in this section, where non-
linear interconnections instead of linear ones couple them.
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Each ith subsystem is described as follows:

ẋi1(t) = xi2(t)

ẋi2(t) = −xi1(t) + μi

(
1 − x2

i1(t)
)

xi2(t) + gi(xi1(t))ui(t)

+ γi

∑

j∈Ni

sin
(
xj1(t) − xi1(t)

)

where i ∈ IN , N is the number of oscillators,
gi(xi1(t)) = (1/[0.4 + 0.1x2

i1(t)]) is the function describing the
nonlinear dynamics of ith actuator, the state vector of the ith
subsystem is xi(t) = [

xi1(t) xi2(t)
]�, xi1(t) is the displace-

ment from the equilibrium position, xi2(t) is the corresponding
velocity, and ui(t) is the force applied to the ith oscillator. We
chose the parameters μi and γi randomly inside the intervals
[0.5, 1] and [−0.5, 0.5], respectively.

An exact 4-rule N-TS fuzzy model (3) can be obtained to
each ith oscillator applying the sector nonlinearity approach
when |xi1(t)| ≤ 3. zi1(t) = xi1(t) and zi2(t) = gi(xi1(t))
were chosen as the premise variables of the ith subsystem and
ϕijκ (xi, xjκ ) = (xi1 − xjκ 1) + sin(xjκ 1 − xi1) ∈ co{0, �i(κ)x},
with κ ∈ Idii , and �i = [

i1 i2 · · · iN
]
, ii(κ) =[

1.22 0
] ∀i ∈ IN , for ijκ (κ) = −ii(κ), if jκ ∈ Ni and

ij(κ) = [
0 0

]
, otherwise. The membership functions are

ς1
i (zi) = w1

0(zi1)w2
0(zi2), ς2

i (zi) = w1
0(zi1)w2

1(zi2), ς3
i (zi) =

w1
1(zi1)w2

0(zi2), and ς4
i (zi) = w1

1(zi1)w2
1(zi2), where

w1
0(zi1) = z2

i1

9
, w2

0(zi2) = zi2 − 0.7692

1.7308

and wk
1(zik) = 1 − wk

0(zik), k ∈ I2. Thus, the ith local state-
space matrices are given by

A1
i = A2

i =
[

0 1
−1 − diiγi − 8μi

]

A3
i = A4

i =
[

0 1
−1 − diiγi μi

]

B1
i = B3

i =
[

0
2.5

]

, B2
i = B4

i =
[

0
0.7692

]

A1
ij = A2

ij = A3
ij = A4

ij =
[

0 0
γi 0

]

G1
i = G2

i = G3
i = G4

i =
[

0
γi

]

where dii = |Ni| is the degree of the ith subsystem.
Initially, Theorem 2 is used to ensure the stability of

LSS composed by N = 50 subsystems in which their
interconnections are represented by the graph in Fig. 3, not
considering subsystems #51, #52 and #53 (blue squares).
Figs. 4 and 5 depict the closed-loop behavior of the LSS,
with initial conditions xi10 ∈ [−3, 3] and xi20 = 0 ∀i ∈ IN .
Both figures present an inset picture detailing what happens
for t ∈ [0, 3] to highlight the stabilization of the subsystems.

The subsystems #28 and #29 (red triangles) will be
unplugged from the LSS. However, note that the unplugging
operation of the subsystem #29 would create four smaller
LSSs in the absence of subsystems #51, #52, and #53.
Therefore, these subsystems are sequentially plugged in the
LSS (Theorem 3), within separation time intervals of 5 s for
each operation, before the unplugging operations (Theorem 4)

Fig. 3. Graph of the LSS. The unplugging operation is made in subsystems
#28 and #29 (red triangles). The plugging operation is made in subsystems
#51, #52, and #53 (blue squares).

Fig. 4. Oscillators’ displacements trajectories (xi1(t)) from the equilibrium
position.

Fig. 5. Oscillators’ velocities trajectories (xi2(t)).

of the subsystems #28 and #29, which also occur sequentially
at every 5 s. Since the controllers of the now isolated #28 and
#29 subsystems are isolated after the unplugging operation,
they start to oscillate. Note that the proposed distributed con-
troller guarantees the asymptotic stability of the closed-loop
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LSS and the PnP approach is effective when subsystems are
added or removed from the network.

VII. CONCLUSION

In this work a PnP distributed control approach for sta-
bilizing continuous-time large-scale nonlinear systems was
proposed. From the combination of the chordal decomposition
theory and the multiple fuzzy summations technique, it was
possible to extend the approach of using fuzzy N-TS models
proposed in [28] for the large-scale case.

Plugging and unplugging operations were proposed to
derive a complete PnP methodology for LSSs. Both opera-
tions can ensure the overall system’s stability through only
the local reconfiguration of controllers obtained from con-
vex design conditions in terms of LMIs derived based on
a quadratic block-diagonal Lyapunov function. Besides that,
the proposed approach is flexible since it can be used
to obtain mixed distributed and decentralized controllers
and allows the joint use of any off-the-shelf FDI system.
A network of coupled Van der Pol oscillators has been
used to illustrate the effectiveness of the proposed PnP
approach.

We note that both the location of the subsystems in the
graph and the strength of the interactions impact the con-
trol performance. We plan to investigate these issues in-depth
in future research. That also includes using the nonquadratic
Lyapunov function candidates and considering time delay in
the control laws as well as in the interconnections among
subsystems.

APPENDIX

MULTIPLE FUZZY SUMMATIONS

The analysis and synthesis conditions of N interconnected
N-TS fuzzy systems usually present N sets of double fuzzy
summations, that is, each subsystem has corresponding dou-
ble fuzzy summations. In other words, each subsystem has
its proper set of membership functions. Based on this, fuzzy
relaxations commonly used in TS fuzzy systems [25], [27] are
not adequate to address this scenario, because they consider
only one set of fuzzy summations and a generalization to N
sets is required. Hence, we use the notion of multisets [50]
that emerges due to multiple sets of membership functions.
A similar idea has been utilized in the context of discrete-
time systems [47], [51], [52] concerning multisets of delays,
which are inserted in the membership function to reduce the
conservativeness.

Next, we review fundamental concepts for multisets. The
notation used is based on the one proposed in [47].

Definition 3 (Multisets [50]): Let S = {ς1, ς2, . . . , ςn} be
a set. A multiset Sς over S is a cardinal-valued function
Sς : S �→ N such that for ς ∈ Dom(Sς ) implies the cardinal
|ς |Sς

. The value |ς |Sς
denotes the multiplicity of ς , that is,

the number of times ς occurs in Sς . A multiset Sς is denoted
here by the set of pairs Sς = {〈|ς1|Sς

, ς1〉, . . . , 〈|ςn|Sς
, ςn〉}.

Remark 15: If the multiplicity of a given element ς ∈ Sς

is 1, it is simply denoted 〈1, ς〉 = ς . Particularly, synthe-
sis conditions in this article present only multisets of double

fuzzy summations, that is, the multiplicity of membership
functions for the ith subsystem is |ςi|Sς

= 2 and the mul-
tiset of membership functions associated to the overall system
is Sς = {〈2, ς1〉, . . . , 〈2, ςn〉}.

Definition 4 (Index Set and Multi-Index): The ith index set
of a multiple fuzzy summation with the multiset of member-
ship functions Sς is the set of all indexes in the sum associated
with subset Sςi ⊂ Sς . It is denoted as

Iςi =
{
ιi =

(
ιi,1, . . . , ιi,

∣
∣Sςi

∣
∣

)
: ιi,l ∈ Iri , l ∈ I∣∣Sςi

∣
∣

}
.

An element ιi ∈ Iςi is called the multi-index of ith subset of
multiset Sς .

Lemma 2 (Multiple Fuzzy Summation With Multiset of
Membership Functions, Adapted From [47, Lemma 2]): A suf-
ficient condition for the satisfaction of the following inequality
dependent on a multiple fuzzy summation with the multiset of
membership functions:

∑

ι1∈Iς1

· · ·
∑

ιN∈IςN

(
N∏

i=1

ς
ιi
i

)

ϒ(ι1,...,ιN ) � 0

is that for every combination of (ι1, . . . , ιN), where ιi is a
multi-index given by Definition 4, the sum of its permutations
is positive definite.

Lemma 2 is obtained from the recursive application of
Polya’s theorem [53] in each ith subset of multiset Sς

associated with multiple fuzzy summation.
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[4] D. D. Šiljak and A. I. Zečević, “Control of large-scale systems: Beyond
decentralized feedback,” Annu. Rev. Control, vol. 29, no. 2, pp. 169–179,
2005.

[5] L. Bakule, “Decentralized control: Status and outlook,” Annu. Rev.
Control, vol. 38, no. 1, pp. 71–80, 2014.
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