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Abstract—Neural Architecture Search is an active research
field that aims to design neural networks automatically. Never-
theless, this is usually an expensive process since the search algo-
rithm must evaluate the performance of many candidate solutions
from a vast search space. Because of that, different strategies have
been proposed to perform efficient Neural Architecture Search.
The recent development of zero-cost performance predictors has
shown a lot of promise due to the possibility of predicting a
network’s performance without training. On the other hand, a
predictor’s correlation with a model’s performance may depend
on the network search space and on the benchmark dataset. Each
performance predictor might lead the search processes to favor
very different network patterns. A design principle is defined as
a restriction in a hyperparameter distribution that is expected to
yield optimum network performance. In this work, we propose
an automatic iterative approach to uncover the design principles
of deep neural networks optimized by zero-cost performance
predictors, and we discuss insightful information obtained by
its application.

Index Terms—Deep Learning, Neural Architecture Search,
Performance Predictors

I. INTRODUCTION

Deep Neural Networks (DNNs) have become very popular
because they excel at many machine learning tasks. On the
other hand, designing DNNs is challenging since there are
almost unlimited possibilities: architecture design choices, hy-
perparameter tuning, training schedules, and others. Nonethe-
less, many Neural Architecture Search (NAS) strategies have
been proposed to help machine learning engineers develop
DNNs automatically [1], [2]. Reinforcement Learning NAS
can learn to design DNNs based on a reward signal that
maximizes the network performance [3]–[5]. Evolutionary
algorithms have also had great success in NAS [6]–[8], and
gradient-based strategies have also been proposed [9]–[11].

However, NAS is a costly process since it usually demands
a lot of computing power to evaluate the performance of many
DNNs. It has motivated the development of different strategies
for efficient NAS, such as weight inheritance, early stopping
policy, reduced training set, reduced population, population
memory, and others [2], [12]. Mellor et al. [13], [14] proposed
the first zero-cost performance predictors for NAS. They argue
that if different images have distinct activation patterns, the
neural network will easily learn to distinguish and classify
them. Activation patterns can be computed with a single
forward pass at initialization without training. Furthermore,
their score requires just a mini-batch of data. It has motivated

researchers to develop new performance predictors and assess
their usefulness for NAS in different scenarios [15]–[17].
It has been reported that most predictors are not robust,
i.e., their correlation with the final accuracy and ranking
varies significantly across different datasets and learning tasks.
Understanding what makes a robust performance predictor is
still an open question.

Radosavovic et al. [18], [19] proposed a different per-
spective for NAS called designing network design spaces
(DNDS). Instead of optimizing networks individually, they
analyze design spaces by observing trends in populations of
DNNs. Their methodology consists of the following steps:
generate random networks from a design space, compute
statistics, analyze the trends in hyperparameters’ distributions
for the best networks, discover (or hypothesize) a new design
principle, define a new design space, and repeat the process. In
this context, a design principle is defined as a restriction in a
hyperparameter distribution that is expected to yield optimum
network performance. This process results in an optimized
design space, which they call RegNet. The authors performed
experiments on the AnyNet design space, which is a general-
ization of ResNet [20] and ResNeXt [21] design spaces. They
argue that this method is useful for understanding the design
principles of top-performing DNNs. However, their process
involves manual attempts to improve the overall distribution
of AnyNet subspaces.

In this work, we propose an automatic DNDS method to
uncover the design principles of neural networks optimized
by zero-cost performance predictors, and we discuss insightful
information obtained by its application. Our method is based
on iterated sampling, empirical bootstrap, and hyperparameters
intervals refinement. The hidden design principles are then
uncovered insofar as the trends are perceived and took into
account to optimize the search space. Starting with the AnyNet
design space, we analyze zero-cost performance predictors
proposed by Mellor et al. [13], [14] and by Abdelfattah et al.
[15]. Experiments are conducted on CIFAR-10 and CIFAR-
100 benchmark datasets [22].

The remainder of this work is divided as follows. Section
II discusses some related works. Section III introduces and
defines the zero-cost performance predictors analyzed in this
work. Section IV describes the AnyNet design space. Section
V describes the methodology and experimental settings. Sec-
tion VI presents the results. Section VII is the conclusion.
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II. RELATED WORKS

Abdelfattah et al. [15] made the first study comparing
different zero-cost performance predictors. Their work is
particularly interesting because they observed that zero-cost
pruning scores could also be adapted for NAS. They reported
the performance of adapted pruning-at-initialization metrics
— snip [23], grasp [24], synflow [25], and fisher
[26], [27] — comparing their Spearman’s rank correlation with
common proxy tasks studied by Zhou et al. on EcoNAS [12].

Ning et al. [16] analyzed one-shot estimators — those that
rely on sharing the parameters of a supernet between all
candidate architectures — as well as zero-cost estimators that
require no training. It was reported that different metrics might
favor different architecture patterns. The authors also discussed
the properties and weaknesses of performance predictors and
suggested improvements.

White et al. [17] made a large-scale study of 31 per-
formance predictors from different paradigms: curve extrap-
olation, weight sharing, supervised learning, and zero-cost
proxies. They evaluated their ability to predict the models’
performance and speed up the NAS process in different
settings.

III. ZERO-COST PERFORMANCE PREDICTORS

A. Gradient Norm

The grad_norm performance predictor was proposed by
Abdelfattah et al. [15]. It is defined as the Euclidean norm of
the gradients on a mini-batch of data.

B. SNIP

Lee et al. [23] proposed a network pruning algorithm
called Single-shot Network Pruning based on Connection
Sensitivity (SNIP). Their connection sensitivity score detects
relevant connections at initialization, thus eliminating the need
for expensive prune-retrain iterations. Abdelfattah et al. [15]
adapted this and other zero-shot pruning scores to study
their effectiveness as performance predictors for NAS. Let
θ1, . . . , θM be the network parameters and let L be the loss
function on a mini-batch of data. The snip score for NAS is
defined as:

S =

M∑
i=1

∣∣∣∣θi ∂L∂θi
∣∣∣∣

C. GRASP

As snip, Abdelfattah et al. [15] also adapted the Gradient
Signal Preservation (grasp) zero-cost pruning score proposed
by Wang et al. [24]. Their criterion is also posed in terms
of synaptic saliency. However, instead of preserving the loss
at initialization, grasp differs from snip in that it aims at
preserving the gradient flow. They argue that this yields better
final performance than the preservation of the initial random
loss because snip does not consider blocking gradient flow

when a given connection (or parameter) is pruned. The adapted
grasp score for NAS is defined as:

S = ∥−θ ⊙HL∇L∥1 =

M∑
i=1

−θi

M∑
j=1

∂2L
∂θi∂θj

∂L
∂θj

where θ = (θ1, . . . , θM ) are the network’s parameters, HL
is the Hessian of the loss w.r.t. the parameters, ∇L is the
gradient of the loss, ⊙ is the Hadamard product, and ∥ · ∥1 is
the ℓ1-norm, that is, the sum of the elements of the vector.

D. Synaptic Flow

Iterative Synaptic Flow Pruning (synflow) is a pruning-
based criterion to score neural networks supporting NAS [25].
In this context, the intersection between NAS and pruning
is established in terms of the synaptic saliency score, which
assesses the effect on loss when a single parameter or a set of
parameters θ are removed from a given network.

Let L be a loss function comprising the product of all
network parameters, the per-parameter synaptic saliency score
Sp is defined as:

Sp(θ) =
∂L
∂θ

⊙ θ,

where ⊙ denotes the Hadamard product, i.e., an element-wise
matrix product. The total synflow score of a network as:

S =

M∑
i

Sp(θi).

E. FISHER

This zero-cost predictor is based on pruning activation
channels on the network. In practical terms, the channels
(features maps) and their respective parameters, which have
little effect on the model performance, are removed [26], [27].

Let be a neural network with a set of parameters named Θ
trained to minimize a cross-entropy loss function L, such that

L(Θ) = EP [− logQΘ(z | I)]

being I, z, EP and, QΘ the inputs, outputs, expectation w.r.t.
a given data distribution P and, QΘ, respectively. One can
evaluate the effect of addition or removal termed as ∆Θ of a
given parameter in the loss function by applying a 2nd order
Taylor expansion [26], as detailed as follows

L(Θ +∆Θ)− L(Θ) ≈ g⊤∆Θ+
1

2
∆Θ⊤H∆Θ

where g = ∇L(Θ) and H = ∇2L(Θ). Let θi ∈ Θ be a
parameter to be dropped, i.e, set to 0, the 2nd order Taylor
expansion can be rewritten as

L(Θ− θiei)− L(Θ) ≈ −giθi +
1

2
Hiiθ

2
i

where ei is a vector with just the ith component set to 1 (the
remainder is 0), and Hii is the diagonal of Hessian matrix H
defined

Hii ≈ EP

[(
∂

∂θi
logQΘ(z|I)

)2
]
≈ 1

N

N∑
n=1

(
∂Ln

∂θi

)2

.
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where n = 1, . . . , N denotes the nth input of I. The afore-
mentioned approximation is carried out considering Fisher
Information which transforms a second-order derivative into
the square of first-order derivative [28]. As pointed out by
Hassib and Stork [29], one can assume Θ to be at a local
optimum which leads to gi = ∂L

∂θi
≈ 1

M

∑M
i

∂Ln

∂θi
≈ 0 insofar

as the model converges. Therefore, the per parameter saliency
score can be computed as

S(θi) =
1

2N
θ2i

N∑
n=1

g2ni ∝ θ2i

N∑
n=1

g2ni,

and considering the entire feature map one has

S =

M∑
i

θ2i

N∑
n=1

g2ni =

M∑
i=1

N∑
n=1

(gniθi)
2.

F. Jacobian Covariance
The Jacobian Covariance (jacov) was proposed by Mellor

et al. in their first version of Neural Architecture Search
without Training [13]. The score is computed on a mini-batch
of data X = {x1, ..., xN} with size N . Let xi ∈ RD be and
input signal xi = (xi,1, . . . , xi,j , . . . , xi,D) that will be
mapped through the network into the output yi ∈ RC , where
D is the dimension of the input signal and C is the dimension
of the output signal, i.e., the number of classes. First of all,
the score transforms the network output yi to a scalar value
fi ∈ R that is the number of the output class. Let J be a
matrix defined as:

J =

∇f(x1)
...

∇f(xN )

 =


∂f1
∂x1,1

. . . ∂f1
∂x1,D

...
. . .

...
∂fN
∂xN,1

. . . ∂fN
∂xN,D

 ,

where, for simplicity of notation:

∂fi
∂xi,j

=
∂f(xi)

∂xi,j

for 1 ≤ i ≤ N and 1 ≤ j ≤ D, where N is the size of the
mini-batch of data X , and D is the dimension of the input
signal.

Let CJ be a covariance matrix CJ = (J−MJ)(J−MJ)
T ,

where MJ is a matrix with elements:

(MJ)i,j =
1

N

D∑
j=1

Ji,j

Let the ΣJ be correlation matrix whose elements are:

(ΣJ)i,j =
(CJ)i,j√

(CJ)i,i(CJ)j,j

Let σJ,i ≤ · · · ≤ σJ,N be the N eigenvalues of ΣJ . Then,
the jacov score is defined as:

S = −
N∑
i=1

[
log(σJ,i + k) + (σJ,i + k)−1

]
Where k = 10−5 is a constant for numerical stability.

stem
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Fig. 1. An AnyNet starts with a stem, followed by a sequence of 3 stages, and
then by a head that outputs the classification. The configuration of each stage
is controlled by the following hyperparameters: di is the number of blocks
of the ith stage, wi is the number of filters, bi is the bottleneck ratio, gi is
the number of parallel group convolutions and, n is the number of outputs
(classes).

G. Logarithm of Determinant of Activation Patterns

This performance predictor was also proposed by Mellor et
al. [14] in their final version of Neural Architecture Search
without Training [13]. When an input signal flows through a
neural network, a rectified linear unit (ReLU) may be activated
(indicated as 1) or not (indicated as 0). Let ci be the binary
code of activation indicators for input xi from a mini-batch
of data 1 ≤ i ≤ N . Let dH(ci, cj) be the Hamming distance
between two codes, and let NA be the total number of ReLUs
in a given network. A kernel matrix NH of activation patterns
is constructed as follows:

NH =

NA − dH(c1, c1) . . . NA − dH(c1, cN )
...

. . .
...

NA − dH(cN , c1) . . . NA − dH(cN , cN )


The logdet score is defined as the logarithm of the

determinant of the kernel matrix, i.e., S = log |NH |. It is
worth noticing that the greater the difference in activation
patterns, the greater the score.
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IV. ANYNET DESIGN SPACE

The AnyNet design space [19] can generate many different
architectures based on ResNet [20] and ResNeXt [21] building
blocks. Those architectures are very flexible and used in many
computer vision tasks with good performance [30]. Figure 1
depicts a general AnyNet architecture for experiments on
CIFAR datasets. An AnyNet consists of a linear sequence
of convolutions followed by Batch Normalization (BN) and
Rectified Linear Units (ReLU), as most deep convolutional
networks.

Let the input be an image with r × r resolution and three
color channels. It starts with an AnyNet stem: 3×3 convolution
with w0 filters and stride 1. Then, the AnyNet body performs
the bulk of computation in a sequence of 3 stages. The ith
stage has a sequence of di AnyNet blocks based on the residual
bottleneck block with group convolutions [21]. They start with
a 1×1 convolution with wi/bi filters, where bi is the bottleneck
ratio. It is followed by gi parallel 3×3 convolutions, followed
by a 1 × 1 convolution with wi filters that are added to the
block’s input signal by the shortcut connection. Downsampling
with stride 2 is performed in the first block of the second
and third stages. Finally, the AnyNet head performs average
pooling followed by a fully connected layer that predicts one
of the n classes.

V. METHODOLOGY

A. Benchmark Dataset

The experiments are performed using the CIFAR-10 and
CIFAR-100 datasets as baselines. Both contain 60, 000 images
split into 50, 000 for training and 10, 000 for validation. The
difference is in the number of classes since CIFAR-10 contains
10 classes and CIFAR-100 contains 100 classes [22]. These
datasets were chosen because they remain challenging despite
low compute requirements, and they are used by many NAS
proposals [31]–[33].

B. AnyNet sampling and analysis

The AnyNet samples are generated as follows. All networks
start with a fixed stem with w0 = 64, followed by three
stages of residual blocks, then a fixed head with global
average pooling and a fully connected layer that performs
the classification. The hyperparameters are sampled for each
stage 1 ≤ i ≤ 3 from uniform distributions with the following
ranges:

• Depths: 1 ≤ di ≤ 16;
• Group widths: 1 ≤ gi ≤ 32;
• Widths: 1 ≤ wi ≤ 512 divisible by gi;
• Bottleneck ratios: bi ∈ {1, 2, 4};

where di is log-uniform, gi and wi are power-2-uniform. For
a configuration with 3 stages, there are 12 hyperparameters
and (16.45.3)3 ≈ 1010 possible network models. It is also the
initial cardinality of the subspace Ω for each predictor.

Following Radosavovic et al. [19], we only compare net-
works with similar complexities. Using the baseline com-
plexity of ResNet-18 (40 MFLOPs), the random networks’

complexities are limited between 10 and 50 MFLOPs regime.
Suppose a random network is generated with lower (or higher)
FLOPs. In that case, it is discarded, and a new sample
is created until the desired number of random networks is
obtained. After that, all networks are assessed with the
aforementioned performance predictors (grad_norm, snip,
grasp, synflow, fisher, jacov, and logdet). We ob-
serve the correlations between the predictors (Fig. 2), and we
explore the relations between hyperparameters and predictors’
scores using Decision Trees [34] to learn hyperparameters’
rules that define top-scoring networks for each predictor (Fig.
3). This initial sample generates 5, 000 AnyNets with different
architectures.

We used the implementation of zero-cost predictors pro-
vided by Mellor et al.1 and by Abdelfattah et al.2, and the
AnyNet implementation provided by Radosavovic et al.3. The
experiments were performed on a single NVIDIA A100 GPU,
taking about two weeks for all results.

C. Automatic Evolution of AnyNet Subspaces

Instead of refining the AnyNet subspace manually as in [19],
we automate the process by updating the sampling distribution
iteratively using the hyperparameters’ 95% confidence inter-
vals (CIs) of the top-scoring networks. The CIs are computed
according to [19] as follows.

Let (hi, si) be a pair representing a hyperparameter hi and
a performance predictor score si of the ith network, for 1 ≤
i ≤ N , where N is the sample size. The CIs are estimated
using the empirical bootstrap: (1) resample with replacement
25% of the networks in the original sample, (2) select the pair
(hi, si) with the best score, (3) repeat this process d = 10, 000
times, (4) compute the hi’s 2.5% and 97.5% percentiles. Those
percentiles give the confidence interval limits, and the median
is the most likely optimum value of the hyperparameter.

After computing the 95% CIs for all hyperparameters, we
generate a new set of N random networks, updating the ranges
of the uniform distributions using the CIs. This process is
repeated until the CIs converge to a single value or the new
sampling yields the same CIs as the previous one.

Therefore, starting with a general design space Ω0, each
iteration produces a subset Ωj ⊂ Ωj−1 ⊂ · · · ⊂ Ω0. As the
number of iterations increases, that procedure should not be
expected to produce subspaces that contain the global optimum
networks since the probability pj of the jth CI containing the
optimum value is given by pj = 0.95j . Nonetheless, it will be
empirically shown that this process improves each subset’s
overall score distribution (see Fig. 4). Furthermore, those
subspaces reveal each predictor’s preferences for different
distributions of hyperparameters. Also, by using many samples
(N = 500) and a conservative CI (95%), we intend to
eliminate biases that might be introduced by NAS algorithms
and focus on the direction induced by each performance
predictor.

1https://github.com/BayesWatch/nas-without-training
2https://github.com/SamsungLabs/zero-cost-nas
3https://github.com/facebookresearch/pycls
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Fig. 2. Kendall’s correlation between performance predictors.

D. Comparison Between AnyNet Subspaces

To evaluate the quality of the architectures generated by
each performance predictor, we sample their final subspaces
and perform full training. We generate 25 random networks
for each final subspace and pick the top-scoring one. The
models are fully trained using 300 epochs, batch size of 32, a
learning rate of 0.025 decaying by 0.1 on epochs 150 and 225,
weight-decay of 0.00005, standard gradient descent optimizer
with Nesterov momentum of 0.9, label smoothing of 0.1, and
standard augmentations for CIFAR-10 (normalization, 4 pixels
padding, a random crop of 32x32 and, random horizontal
flipping) [21]. The results are evaluated in terms of the error
rate on the test dataset. We also compare these results with
standards ResNet-18 [20] and ResNeXt-29 [21] of similar
complexity.

VI. RESULTS AND ANALYSIS

A. Trends in the initial AnyNet design space

In this section, we present the hidden design principle har-
vested by exploring the networks’ scores of random sampling
on the AnyNet space for the CIFAR-10 dataset. The predictor
values distribution is the first observation about the 5, 000
AnyNet samples. Using Kolmogorov-Smirnov test [35], we
found that all predictor values have exponential distributions
with 95% significance. Therefore, the remaining analysis con-
siders the natural logarithm for each predictor.

The relation between predictors’ scores can determine if
they lead to similar architecture parameters or not. Fig-
ure 2 shows Kendall’s correlation between the performance
predictor values. We see that grad_norm, snip, and

fisher have similar preferences on the sampled space. Also,
synflow has a small correlation with these metrics, logdet
and grasp are not correlated, and jacov slightly disagrees
with other metrics.

To understand what hyperparameters influence each pre-
dictor, we train decision trees considering depths d, widths
w, group widths g, and bottleneck ratios b as inputs, and
the predictor’s scores (ranked as low, medium, or high) as
outputs. The decision trees are trained with the 5,000 ran-
dom networks at the initial search space. Figure 3 shows
the decision trees obtained from each performance predictor.
grad_norm, snip, synflow, and fisher assign higher
scores to networks with higher depth on the last stage, i.e.,
their best 30% networks have d3 ≥ 6, although synflow
differ regarding the decision rule for the medium and lower
ranks. 48% of the best-evaluated networks by grasp have
higher width on the last stage with w3 ≥ 24. 44% of jacov’s
best networks have width w1 ≥ 6 on the first stage and depth
d3 < 5 on the last stage. At last, logdet high score is
dependent mainly on a high number of residual blocks in the
first stage, i.e., d1 ≥ 3.

B. Evolution of AnyNet subspaces

Figure 4 shows the evolution of the empirical distribution
functions (EDF) caused by the automatic refinement of sub-
spaces described in sec. V-C. Let S be a random variable
representing a predictor’s score. An EDF is a function such
that f(x) = P (S < x) estimated from the sample. As the
area under the curve decreases, the probability of generating
better networks increases significantly. The iterative processes
also reduces the search space size |Ω| exponentially on both
CIFAR-10 and CIFAR-100, as depicted in Figure 5.

The design principles (i.e., an optimum restriction on hy-
perparameters’ values) obtained by each predictor are detailed
in Table I as confidence intervals. Some hyperparameters con-
verged to single value assignments. For instance, synflow
assigned strict values for depth (d), group width (g), and
bottleneck ratio (b) in all stages on both datasets. This provides
empirical evidence that performance predictors favor very
different design principles.

Figures 6, 7, 8 and 9 show the detailed evolution of CIs for
each class of hyperparameters on CIFAR-10. The predictors
grad_norm, snip, grasp, synflow, and fisher tend
to maximize depths on all stages, whereas jacov rapidly
converges to small depths. logdet diverges from the others
by maximizing depths in the first stages and minimizing it in
the last one. The predictors that prefer deeper networks choose

grad_norm
d_3 < 6

w_3 < 24

low
34%

med
35%

hig
30%

yes no

snip
d_3 < 6

w_3 < 24
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34%
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35%

hig
30%

yes no

grasp
w_3 < 24

d_3 < 6

med
34%

low
18%

hig
48%

yes no

synflow
d_3 < 6

d_2 < 5

low
45%

med
25%

hig
30%

yes no
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d_3 < 6

w_3 < 24

low
34%

med
35%

hig
30%

yes no

jacov
w_1 < 6

d_3 >= 5

low
30%

med
26%

hig
44%

yes no

logdet

d_1 < 3

low
45%

hig
55%

yes no

Fig. 3. Decision Trees trained to predict the score output using the hyperparameters as input. The levels low, medium and high are defined by ranking the
scores. Leafs also show the percentage of networks that fall into each case.
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Fig. 5. Evolution of the subspace size Ω considering each zero-cost predictor along iterations on CIFAR-10 and CIFAR-100. These measurements point out
all possibles networks considering a recursive refinement of 95% C.I. of best the hyperparameters estimated with empirical bootstrap.

TABLE I
UNCOVERED DESIGN PRINCIPLES FROM ANYNETS OPTIMIZED BY ZERO-COST PERFORMANCE PREDICTORS ON CIFAR-10 AND CIFAR-100.

CIFAR-10

Predictor # iterations d1 d2 d3 w1 w2 w3 g1 g2 g3 b1 b2 b3

grad_norm 9 [15, 16] [13, 16] [11, 14] [2, 8] [2, 4] [64, 128] [1, 2] [1, 2] [1, 16] [2, 4] [1, 4] [1, 2]
snip 10 [12, 16] [13, 15] [12, 14] [4, 8] 2 [64, 128] [1, 4] [1, 2] [1, 8] [1, 4] [1, 4] [1, 4]
grasp 9 [9, 13] [8, 11] [10, 16] [2, 4] [2, 4] [64, 128] [1, 2] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4]
synflow 12 15 16 16 8 [16, 32] [32, 64] 8 16 16 1 1 1
fisher 14 [12, 14] [14, 16] [13, 15] 2 2 [64, 128] [1, 2] [1, 2] [1, 16] [1, 4] [1, 4] [1, 4]
jacov 7 [2, 3] [2, 3] 1 [32, 64] [8, 64] [16, 128] [2, 8] [2, 8] [1, 16] [1, 4] [1, 4] [1, 4]
logdet 9 13 12 [1, 5] 16 16 [2, 16] 1 1 [1, 4] 4 4 [1, 4]

CIFAR-100

grad_norm 8 [12, 15] [11, 15] [12, 16] [2, 4] [2, 4] [64, 128] [1, 2] [1, 2] [1, 8] [1, 4] [1, 4] 1
snip 10 [12, 16] [13, 16] [10, 12] [2, 4] [2, 2] [64, 128] [1, 2] [1, 2] [2, 16] [1, 4] [1, 4] [1, 2]
grasp 14 [9, 12] [10, 13] [13, 15] [2, 4] [2, 4] [64, 128] [1, 2] [1, 2] [2, 4] [1, 4] [1, 4] [1, 4]
synflow 12 11 16 16 8 [16, 32] [32, 64] 4 16 32 1 1 1
fisher 11 [13, 16] [13, 15] [12, 15] 2 2 [64, 128] [1, 2] [1, 2] [1, 16] [1, 4] [1, 4] [1, 4]
jacov 7 [2, 3] [1, 2] 1 [16, 64] [8, 32] [2, 16] [2, 8] [2, 8] [1, 4] [1, 4] [1, 4] [1, 4]
logdet 5 16 [1, 7] [1, 6] 16 [4, 16] [2, 16] 1 [1, 2] [1, 8] 4 [1, 4] [1, 4]
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Fig. 6. Evolution of depths’ design principles uncovered from networks optimized by zero-cost performance predictors on CIFAR-10.
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Fig. 7. Evolution of widths’ design principles uncovered from networks optimized by zero-cost performance predictors on CIFAR-10.
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Fig. 8. Evolution of group widths’ design principles uncovered from networks optimized by zero-cost performance predictors on CIFAR-10.
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small width values in the first and second stages to compensate
for complexity (Figure 7). Widths in the range w3 ∈ [64, 128]
are most often perceived in the third stage for grad_norm,
snip, grasp and fisher. Only synflow tends to double
the width on each stage, as is usually done in ResNet archi-
tectures, since w1 = 8, w2 ∈ [16, 32] and, w3 ∈ [32, 64].
Contrary to the others, jacov prefers wider networks in the
first stages with w1 ∈ [32, 64], and w2 ∈ [8, 64], and it
does not converge to tight intervals. Regarding group widths,
Figure 8 shows a noticeable difference for jacov converging
to wider intervals, and for synflow defining g2 = 16,
which is a high value for the second stage compared to the
others. In Figure 9, we see that most zero-cost predictors have
no preferences for bottleneck ratios, except for grad_norm
(b1 ∈ [2, 4] and b3 ∈ [1, 2]), synflow (b1 = b2 = b3 = 1),
and logdet (b1 = b2 = 4).

Figure 10 shows the evolution of network complexities.
Overall, most predictors have networks distributed across the
FLOPs’ budget. The exceptions are synflow and logdet,
with logdet showing a strong tendency to increase the

number of FLOPs to the budget’s limit. logdet also showed
a strong tendency to minimize the number of parameters and
maximize the number of activations.

C. Performance evaluation of best subspaces

In the sequel, we perform a random search, then fully train
the selected network according to the methodology in section
V-D. Figure 11 shows the validation errors throughout the
epochs for the sampled architectures from the final subspaces,
as well as for ResNet and ResNeXt baselines of similar
complexity. There is a great variation in the expected perfor-
mance of the design principles obtained by each performance
predictor. synflow yielded the best results comparable to the
baselines. The other predictors yielded poor results. This result
is consistent with Abdelfattah et al. [15], who reported that
synflow was the most robust predictor across all datasets.

Table II shows the error rates, FLOPs, number of parame-
ters, and number of activations for each architecture. ResNeXt-
29 16x1 has the best trade-off between classification accuracy
and network complexities, whereas synflow has the worst
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Fig. 11. Validation error on CIFAR-10 and CIFAR-100 of architectures created with the uncovered design principles for each performance predictor, and
standard baseline architectures from the literature (ResNet and ResNeXt).

TABLE II
PERFORMANCE COMPARISON BETWEEN RESNET/RESNEXT BASELINES AND ARCHITECTURES CREATED WITH UNCOVERED DESIGN PRINCIPLES.

Architecture CIFAR-10 CIFAR-100
Error (%) FLOPs (106) Parameters Activations Error (%) FLOPs (106) Parameters Activations

grad_norm 11.9 45.60 667,214 636,938 36.21 31.42 468,596 562,276
snip 15.4 24.24 144,274 1,393,162 44.59 40.02 575,020 635,492
grasp 15.9 33.50 486,550 588,298 37.68 30.93 467,600 560,228
synflow 7.14 43.09 344,138 868,362 30.64 46.41 491,268 770,148
fisher 17.3 31.05 456,486 586,250 46.71 35.79 517,000 761,444
jacov 9.79 21.96 65,738 622,602 72.43 34.71 36,692 708,196
logdet 9.68 50.00 80,794 2,505,738 56.15 49.70 57,588 2,498,148
ResNet-18 8.11 40.81 272,474 200,714 32.07 40.82 278,324 200,804
ResNeXt-29 1x16 7.23 57.61 360,906 598,026 29.48 57.61 366,756 598,116
ResNeXt-29 2x8 7.62 36.37 215,754 598,026 30.23 36.38 221,604 598,116
ResNeXt-29 4x4 8.04 25.76 143,178 598,026 31.09 25.76 149,028 598,116
ResNeXt-29 8x2 8.06 20.45 106,890 598,026 31.55 20.45 112,740 598,116
ResNeXt-29 16x1 8.48 17.79 88,746 598,026 31.97 17.80 94,596 598,116

since it generates more costly models regarding FLOPs, num-
ber of parameters, and activations. This result is also consistent
with synflow’s preference for large architectures reported by
Ning et al. [16].

VII. CONCLUSION

This paper presented an approach to analyzing the rela-
tionship between zero-cost performance predictors and their
hyperparameters’ distribution, considering an iterative search
space refinement for NAS. Our analysis aimed at getting
insightful information about hyperparameter trends in the
AnyNet design space, covering different ResNeXt-like models.
We conducted experiments to evaluate the correlation between
the performances of the zero-cost predictors to get an initial
intuition about their scores and network properties.

We also analyzed the AnyNet subspaces evolution, consid-
ering an iterative sampling of network models using empir-
ical bootstrap for the search space refinement. By observ-
ing the outcomes presented in Section VI, one could note
the improvement of the predictors’ scores as the subspace
refinement provides convergent confidence intervals for the
hyperparameters. Along all analyses performed, synflow
converges for a specific model configuration as summarized in

Table I and presented the best performance among predictors
with competitive results when compared to the considered
baselines, outperforming all of them on CIFAR-10 and out-
performing ResNet-18, ResNeXt-29 16x1, ResNeXt-29 8x2,
and ResNeXt-29 4x4 on CIFAR-100.

From all findings obtained with the developed research, we
consider a deep study on the FLOPS and parameters regime
an interesting issue for future works. The extension of these
analyses with the inclusion of other zero-cost predictors —
such as Neural Tangent Kernel [36] —, datasets — such as
ImageNet — and search spaces — such as NATS-Bench [37]
— are also targets for future works to evaluate the robustness
and generalization ability of those predictors for different tasks
and design principles, respectively.

The best zero-cost performance predictor was synflow
both in terms of accuracy and robustness across the two
datasets, although it yielded more complex networks. As
Abdelfattah et al. [15] suggested, “The most immediate open
question for future investigation is why the synflow proxy
works well — analytical insights will enable further research
in zero-cost NAS proxies.” Based on our empirical results,
there is a significant difference between synflow’s design
principles compared to the other predictors, which we sum-
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marize as: bottleneck ratios bi = 1, higher group widths,
and a proportional progression in widths’ intervals on each
stage. However, these design principles are restricted to the
AnyNet search space. Further research could uncover more
general design principles when comparing different search
spaces. We expect these analyses to help the understanding
of zero-cost performance predictors and the development of
novel strategies for NAS.
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