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Abstract
This article proposes a data-stream-driven event-triggered control strategy using
evolving fuzzy models learned by granulation of input–output samples of non-
linear systems with unknown time-varying dynamics. The evolving fuzzy model
is obtained online from a data stream ensuring data coverage based on the prin-
ciple of justifiable granularity and controlled by an event-triggering learning
mechanism dependent on the model accuracy. This evolving fuzzy model is used
to design event-triggered fuzzy controller to stabilize networked control systems
while reducing the used communication resources. The event-triggered learning
mechanism is employed to determine the instants in which the event-triggered
fuzzy controller should be redesigned. Numerical examples illustrate the effec-
tiveness of the proposed learning event-triggered fuzzy control algorithm.
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1 INTRODUCTION

The data transmission between physical and computational layers has been increasingly integrated by shared
communication networks.1 In contrast to traditional feedback control systems, in which the plant, sensors, actuators,
and controller are connected based on the point-to-point protocol, networked control systems (NCSs) provide more flex-
ible architectures with reduced installation costs and better maintainability.1,2 As a result, NCSs have been considered
in several applications, such as car automation,3 micro-grids,4 and unmanned vehicles.5 For more applications, see Ref-
erences 1 and 6. Nevertheless, the intrinsic limited network bandwidth has motivated the development of strategies to
reduce communication resources consumption still preserving desired control performance requirements.
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To avoid wasting scarce communication resources frequently encountered in data packet-based communication in
NCSs, instead of usual purely time specifications, the state or output information is considered in resource-aware con-
trol techniques to reduce the number of transmissions while preserving closed-loop stability or performance.7 The
resource-aware control techniques include event-triggered control (ETC)8-11 and self-triggered control.7 In self-triggered
schemes, the communication resources are saved without continuous monitoring of the state information. For instance,
this strategy has been recently exploited for distributed control of nonlinear systems with unknown control directions.12,13

The main advantage of ETC systems is the presence of a feedback mechanism introduced into the sampling and commu-
nication process, such that the measurement data are transmitted to the controller, only when it is necessary to ensure the
closed-loop stability and/or performance requirements, thus offering the possibility of immediate compensation.7 This is
the main motivation of this work to focus on ETC. However, the application of ETC to complex systems demands accurate
models that are able to cope with uncertainties and time-varying dynamics.

The task of modeling real-world systems consists of developing methodologies that capture the dynamics of pro-
cesses, which might be nonlinear and time-varying, and describing them with a certain precision. The control of those
systems requires the characterization of the input–output relationships. Fuzzy control has been effectively employed
as modeling tool for controlling nonlinear and time-varying systems.14 On the one hand, when mathematical mod-
els of the plant are available, fuzzy model-based control approaches can be employed to obtain an approximate or
exact Takagi–Sugeno (T-S) fuzzy representation of the plant whose structure is adopted to construct an appropri-
ate fuzzy control law.15,16 Considering Lyapunov stability arguments, control design conditions are generally derived
in the form of linear matrix inequalities (LMIs), which can be efficiently solved using semidefinite programming.
On the other hand, when only partial information about the system’s model is available, fuzzy adaptive approaches
are used to obtain approximations for the unknown/uncertain terms of the plant.17,18 Unfortunately, in the afore-
mentioned works it is necessary that a fuzzy rule base be beforehand constructed. When the physical models are
not available and only systems’ observations (measurements) of inputs and outputs data, data-based approaches
are suitable alternatives for controlling complex dynamics systems subject to time-varying dynamics, measurement
errors, uncertainties, and even information unavailability.19,20 Based on these aspects, the flexibility provided by
data-driven approaches is a helpful property on control systems design, especially when it comes to adaptability and
robustness.

Recently, data-based approaches to design ETC strategies have been attracted much attention, since the accurate
description of complex systems is often unavailable. The existing approaches include, for instance, iterative learn-
ing control,21 reinforcement learning control,22,23 Q-learning,24 model-free adaptive control,25 and adaptive dynamic
programming.26 However, most of those approaches are unable to deal with uncertain time-varying dynamics. In Ref-
erence 27, it is shown that evolving fuzzy models can be effectively employed to design robust control strategies for
nonlinear systems, possibly uncertain and time-varying, with unknown dynamics based only on the measured inputs
and outputs. This data-driven fuzzy modeling is parameterized considering a data stream from scratch and the learning
fuzzy controller is updated online, whenever the local fuzzy rules change, solving an LMI problem. Indeed, evolving fuzzy
models are applied to a broad class of problems such as fault diagnosis and prognostics,28 forecasting,29 classification,30

clustering,31,32 and identification,33 due to the flexibility and adaptability of the fuzzy rule base in terms of their param-
eters and semantics, which are useful properties to deal with (nonlinear) time-varying dynamics in data-stream-driven
approaches.

In this article, a new learning-based ETC strategy is proposed. The main motivation is the problem of networked
control of nonlinear systems with unknown and time-varying dynamics. To address this problem, a data-stream-driven
learning process is proposed by employing the evolving ellipsoidal fuzzy information granules (EEFIGs) to obtain T-S
fuzzy auto-regressive with exogenous inputs (ARX) models that are translated into a T-S fuzzy state-space representation.
The model learning is performed through the justifiable formation and evolution of information granules to represent
knowledge uncovered from data streams. The proposed data-driven control algorithm comprises the formation of a flex-
ible knowledge base through evolving fuzzy systems that describes a system from interpretable representations in terms
of semantically soundly local fuzzy models for closed-loop model learning. In summary, the main contributions of this
work are:

• a new online learning ETC algorithm based on evolving fuzzy information granules for NCSs with nonlinear
time-varying plants with unknown dynamics;

• an improved evolving fuzzy modeling algorithm called EEFIG-ARX which provides proper T-S fuzzy ARX models for
representing nonlinear time-varying plants with unknown dynamics;
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• the estimation of the consequent parameters of the fuzzy information granules by using a novel fuzzy weighted recur-
sive least squares with variable-direction forgetting (FWRLS-VDF). This estimator is the recursive least squares with
variable-direction forgetting (RLS-VDF)34 weighted by fuzzy membership degrees which it is suitable for evolving
control applications, since it prevents excitation persistence loss;

• a new event triggering learning mechanism which is proposed to avoid unnecessary controller updates while ensuring
the minimum tolerated model accuracy.

The remaining of this article is organized as follows. Section 2 presents the problem formulation concerning simulta-
neous ETC and evolving modeling of nonlinear systems with unknown dynamics. Section 3 introduces the EEFIG-ARX
algorithm for model learning and consequent parameterization through FWRLS-VDF. Section 4 presents the ETC design
based on evolving fuzzy models and provides an overview of the integrated learning control algorithm. Section 5 presents
numerical simulation examples for assessing the proposed learning ETC approach. Finally, Section 6 points out the
achievements, drawbacks, and future perspectives of this work.

Notation: N denotes the set of natural numbers, N≤p denotes the set of natural numbers less than or equal to p ∈
N, R denotes the field of real numbers, and R≥0 (R>0) denotes the set of all non-negative (positive) real numbers. The
Euclidean norm is denoted by || ⋅ ||. In a symmetric matrix, the symbol “⋆” denotes the term deduced by symmetry
and diag(X1,… ,Xn) denotes the block diagonal matrix of matrices X1,… ,Xn. For vectors xi ∈ Rni , i ∈ N≤p the vector
[x⊤1 , x

⊤
2 ,… , x⊤p ]⊤ ∈ Rn, with n =

∑p
i=1ni, is denoted by (x1, x2,… , xp).

2 PRELIMINARIES

Consider the setup depicted in Figure 1, where the discrete-time plant  , possibly nonlinear and time-varying, is con-
nected to the controller  through a general-purpose network. It is assumed that there is no knowledge on the plant’s
dynamic model, only the input and output signals are available for measurement. The plant is described as

yk = F (yk−1,… , yk−𝜏 ,uk−1,… ,uk−𝛿, k) , (1)

where yk ∈ Rn is the measured output, uk ∈ Rm is the input vector, the map F (⋅) is unknown, and the variables 𝜏 and 𝛿
denotes the order of the ARX model with respect to the auto-regressive part and input, respectively, that is, 𝜏 denotes the
maximum lag of y and 𝛿 denotes the maximum lag of u in the structure of the nonlinear map F(⋅).

Let  = (z, k) be a data stream, where z is the sequence of input u and output y samples and k ∈ N0 is the sequence of
positive integers. For the sake of simplicity, the elements of  are denoted by zk = (uk, yk) ∈ Rn+m. Given the observations

F I G U R E 1 Representation of an ETC control setup, where  is the discrete-time plant,  is the controller,  is the network
communication channel, xk is the continuous state measurement, xkj

is the most recently transmitted state measurement, x̃k is xkj
under the

action of the ZOH, yk is the measured output, ŷk is the one-step-ahead output prediction, and uk is the control input

 10991239, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6024 by U

niversidade Federal D
e M

inas G
erais, W

iley O
nline L

ibrary on [16/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2808 CORDOVIL JR et al.

of zk, the EEFIG35 is used to estimate an evolving fuzzy model. The EEFIG model is composed by a collection of granules
Gk =

{
1

k,… ,N
k

}
that spans the following rule-based fuzzy model

Rule i ∶ IF zk is i
k,

THEN ŷi
k = Fi

k (yk−1,… , yk−𝜏 ,uk−1,… ,uk−𝛿) , (2)

where i
k is the ith multidimensional fuzzy set, the EEFIG, at the kth time instant whose structure and normalized mem-

bership functions gi
k at the kth time instant are to be specified later. Thus, using the center-of-gravity defuzzification, the

estimate of (1) is obtained by means of (2) as

ŷk =
N∑

i=1
gi

k(zk)ŷi
k, gi

k(zk) =
𝜔i

k(zk)∑N
i=1𝜔

i
k(zk)

, (3)

where 𝜔i
k ∶ Rn+m → [0, 1] is the activation rule of the ith EEFIG at the kth time instant.

The estimation error due to the model approximation is defined as follows

𝜖k = ŷk − yk. (4)

Although evolving fuzzy models have been successfully employed to drive learning control strategies27 with continu-
ously learned models, performing continuously the learning task requires significant computational cost due to the model
and control updates. Thus, in this article, it is used an event-triggered learning strategy that does not allow the model
learning until it deviates significantly from the expected value, that is, when 𝜖k is higher than a tolerated value. This idea
can be formulated as follows:

n0 = 0, nj+1 = min{k ∈ N ∶ k > nj ∧ ||𝜖k|| < 𝜎||yk||}, ∀j ∈ N, (5)

where 𝜎 ∈ R≥0 is a given constant.
As a result, the proposed learning control approach is not based on the model (2), but it uses a model that is only

updated after a learning event, as described in (5):

Rule i ∶ IF zk is ̃
i
k,

THEN ŷi
k = F̃i

k (yk−1,… , yk−𝜏 ,uk−1,… ,uk−𝛿) , (6)

where ∀i
k ∈ Gk and ∀k ∈

{
nj,… ,nj+1 − 1

}
:

G̃k =
{
̃

1
k,… , ̃

N
k

}
, ̃

i
k = i

nj
, F̃i

k (yk−1,… , yk−𝜏 ,uk−1,… ,uk−𝛿) = Fi
nj
(yk−1,… , yk−𝜏 ,uk−1,… ,uk−𝛿) .

The notation G̃ denotes the granular base which was learned at the last learning event nj. The granular base G̃ is composed
by the information granules ̃i, for i ∈ N≤N , whose consequents’ parameters are denoted by F̃i. Based on the evolving
input–output model (6), the following state-space representation is obtained:

xk+1 = f (xk,uk), yk = h(xk), (7)

where xk ∈ Rnx is the state vector. This state-space model obtained from data is thus available for the ETC design. The
event-triggering mechanism (ETM) determines the sample kj to transmit the state xkj to the controller and the state infor-
mation is available to the controller as x̃k. Since {kj}j∈Z≥0 is a sub-sequence of k ∈ Z≥0, the ETC system can lead to fewer
transmissions than the traditional feedback control setup counterpart.

The following state-feedback controller  is considered to stabilize the plant  :

uk = 𝜙(x̃k), (8)
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CORDOVIL JR et al. 2809

where 𝜙 ∶ Rnx → Rm is a continuously differentiable function and x̃k is the latest state information available to the
controller. The following closed-loop system is obtained substituting the control law (8) into the plant dynamics (7):

xk+1 = f (xk, 𝜙(x̃k), k). (9)

By assuming an ideal communication network, the premise variable and state measurements available to the
controller are, respectively,

z̃k = zkj , x̃k = xkj , ∀k ∈ {kj,… , kj+1 − 1}, (10)

and the following transmission error is induced by the event-based sampling:

ek = x̃k − xk, ∀k ∈ {kj,… , kj+1 − 1}. (11)

To reduce the number of transmissions aiming to reduce the network resources’ usage, a triggering mechanism is
considered to determine the transmission instants as follows:

k0 = 0, kj+1 = min{k ∈ N ∶ k > kj ∧ Γ(xk, ek) ≤ 0}, ∀j ∈ N, (12)

where Γ(xk, ek) is a trigger function specified later.
Problem statement. Given the evolving model (2) learned under the policy in (5), design the state-feedback control

law (8) and the ETM (12) that stabilizes the system (1).

3 EVOLVING FUZZY GRANULAR MODELS

Evolving fuzzy models are self-learning fuzzy rule-based models which are commonly associated to data-stream-driven
approaches and present useful properties in terms of incremental learning, such as flexibility regarding the rule base, and
adaptability regarding the model parameters update performed along the real-time data processing.36

The evolving fuzzy modeling is able to provide fuzzy models that comprise nonlinear and also time-varying dynam-
ics. In the case of control applications, evolving fuzzy models are useful for regulation of systems with unknown and
time-varying dynamics as proposed in References 27 and 37, since the model learns to represent the nonlinearities and
adapts itself to the time-varying behavior, therefore it is suitable for learning-based control design. The procedure for
obtaining the evolving fuzzy models is summarized as follows: it is performed a granulation process on the data stream,
which updates both antecedent and consequent of the fuzzy rule in the sense that a sequence of recursive operations
is carried out for checking similarity on data supporting granules (rules) creation, and the adaptation on the granules’
prototype and parameters.

In Reference 35, it is introduced an online data processing with the employment of evolving fuzzy information
granules. Based on the parametric principle of justifiable granularity,38 a new granularity allocation procedure for knowl-
edge base formation from data streams is developed. This recent strategy is considered in this work to obtain evolving
fuzzy models of nonlinear dynamical systems with time-varying and uncertain dynamics. Details about this strategy are
provided in Sections 3.1 and 3.2.

3.1 Evolving ellipsoidal fuzzy information granules

An EEFIG is a fuzzy set i
k =

(
Rn+m, 𝜔i

k

)
, where 𝜔i

k ∶ Rn+m → [0, 1] is the membership function of the EEFIG
i

k. The membership function 𝜔i
k is parameterized by the granular prototype  i

k of the ith granule at the time
instant k, which is also a numerical evidence basis for the granulation process. The granule prototype is defined
as follows:

 i
k =

(
𝜇i

k
, 𝜇i

k, 𝜇
i
k,Σi

k
−1
)
, (13)
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2810 CORDOVIL JR et al.

where 𝜇i
k
, 𝜇i

k, and 𝜇
i
k are the lower, mean, and upper bound vectors of the ith EEFIG at k and (Σi

k)
−1 is

the inverse of its covariance matrix. Given the granule prototype 
i
k, the membership function of an EEFIG is

parameterized as

𝜔i
k (zk) = exp

{
−
[
(zk − 𝜇i

k)
⊤
(
Δi

k

)−1(zk − 𝜇i
k)
]1∕2

}
, (14)

where Δi
k = diag

{(
𝜇

i
k,1−𝜇

i
k,1

2

)2

,… ,

(
𝜇

i
k,p−𝜇

i
k,p

2

)2}
, p ∈ N≤n+m, being 𝜇

i
k and 𝜇i

k
the semi-axes of the ith EEFIG

prototype such that 𝜇i
k
< 𝜇i

k < 𝜇
i
k.39 Moreover, the distance of a given data sample zk to the ith EEFIG is

given by

d(zk, 𝜇
i
k) = (zk − 𝜇i

k)
⊤Σi

k
−1(zk − 𝜇i

k), (15)

which can be interpreted as the square of Mahalanobis distance.
The granulation process also consists in the formation of an evolving fuzzy rule base from the data stream. For this

purpose, it is used the concept of data sample admissibility. A data sample zk is said to be admitted by a given granule
prototype  i

k if it is used to update the granule prototype parameters. In this sense, two criteria are used to evaluate the
data sample admissibility.

3.1.1 Similarity

Based on the distance (d) of zk to the EEFIG center 𝜇i
k and conditioning it to a threshold, the first level of admissibility

(L1) is reached:

L1 ≡ d(zk, 𝜇
i
k) < 𝜈, (16)

where d(zk, 𝜇
i
k) is defined in (15) and 𝜈 =

(
𝜒2)−1(𝛾,n + m) is a threshold parameterized by the inverse of chi-squared

statistic with n + m degrees of freedom, leading EEFIG prototype to cover around 100𝛾% of the stream sample. In parallel,
as the data samples are available and evaluated, it is established a structure named Tracker whose objective is to follow
the data stream dynamics to indicate change points.

The Tracker is parameterized by a mean vector 𝜇tr
k and an inverse covariance matrix Σtr

k , which are recur-
sively updated.40 The tracker separation verification is made considering the c-separation condition.35 In this
sense, if the Tracker is c-separated from all the existing granule prototypes, a new granule is created consider-
ing data samples that do not reach L1, during a certain discrete time interval (Ts). The condition is verified as
follows

cs ≡
‖‖‖𝜇tr

k − 𝜇i
k
‖‖‖ ≥ c

√
(n + m)max(𝜉max(Σtr

k ), 𝜉max(Σi
k)), ∀i

k ∈ Gk, (17)

where 𝜉max is the largest eigenvalue of Σk and, c ∈ [0,∞) specifies the separation level. Here, c is assumed as 2.

3.1.2 Effect on the granules’ performance index (i
k)

The available data samples are used to update the granule prototype and its semantics. According to a granularity allo-
cation procedure, zk can be used to increase granules’ coverage, updating its prototype. When it comes to semantics, the
update of  i

k directly implies on the antecedent and eventually on the consequent of each granular rule described in (2).
As data are processed and grouped, the granularity allocation procedure is performed in terms of the existing granules,
as summarized as follows:

Data sample contribution index: Each data sample zk ∈ Rn+m is evaluated for each information granule i
k in terms

of its distance to the granule prototype center, 𝜇i
k, and the effect on the parameterization of the granule membership
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CORDOVIL JR et al. 2811

function, which is posed in terms of the prototype  i
k. The data sample contribution index 

i
k is defined as


i
k(zk) = d(zk, 𝜇

i
k)|i

k|, (18)

where d(zk, 𝜇
i
k) is defined in (15) and | ⋅ | is the fuzzy cardinality operator of the ith EEFIG.

Fuzzy cardinality variation analysis: To check the second admission level of a new data sample zk by a granule
prototype, it is necessary to update the fuzzy cardinality as following

|i
k| = |i

k−1| + gi
k(zk) −

𝜕gi
k(zk)

𝜕 i
k

, (19)

where

𝜕gi
k(zk)

𝜕 i
k

=
𝜕gi

k(zk)
𝜕𝜇i

k

Δ𝜇i
k
⊤ +

𝜕gi
k(zk)

𝜕𝜇i
k

Δ𝝁i
k
⊤ +

𝜕gi
k(zk)

𝜕𝜇
i
k

Δ𝜇i
k
⊤
,

with

𝜕gi
k(zk)
𝜕𝜇i

k

=

[
𝜕gi

k(zk)
𝜕𝜇i

k,1

· · ·
𝜕gi

k(zk)
𝜕𝜇i

k,p

]
,
𝜕gi

k(zk)

𝜕𝜇i
k

=

[
𝜕gi

k(zk)

𝜕𝜇i
k,1

· · ·
𝜕gi

k(zk)

𝜕𝜇i
k,p

]
,
𝜕gi

k(zk)

𝜕𝜇
i
k

=

[
𝜕gi

k(zk)

𝜕𝜇
i
k,1

· · ·
𝜕gi

k(zk)

𝜕𝜇
i
k,p

]
,

Δ𝜇i
k
=

[
𝜇i

k,1
− 𝜇i

k−1,1
· · · 𝜇i

k,p
− 𝜇i

k−1,p

]
, Δ𝜇i

k =
[
𝜇i

k,1 − 𝜇
i
k−1,1 · · · 𝜇i

k,p − 𝜇
i
k−1,p

]
,

Δ𝜇i
k =

[
𝜇

i
k,1 − 𝜇

i
k−1,1 · · · 𝜇i

k,p − 𝜇
i
k−1,p

]
,

where each partial derivative is given by

𝜕gi
k(zk)
𝜕𝜇i

k,j

= 2gi
k(zk)

(
gi

k(zk) − 1
) (zk,j − 𝜇i

k,j)
2

(Ωi
k)12(𝜇i

k,j − 𝜇i
k,j
)3
,

𝜕gi
k(zk)

𝜕𝜇i
k,j

= −2gi
k(zk)

(
gi

k(zk) − 1
) zk,j − 𝜇i

k,j

(Ωi
k)12(𝜇i

k,j − 𝜇i
k,j
)2
,

𝜕gi
k(zk)

𝜕𝜇
i
k,j

= −2gi
k(zk)

(
gi

k(zk) − 1
) (zk,j − 𝜇i

k,j)
2

(Ωi
k)12(𝜇i

k,j − 𝜇i
k,j
)3
,

with Ωi
k =

∑p
j=1

(
zk,j−𝜇i

k,j

bi
k,j−ai

k,j

)2

, j ∈ N≤p. Notice that the derivative of  i
k with respect to Σi

k
−1 is zero, as it is not directly related

to the formulation of the membership function𝜔i
k. The derivative term in (19) refers to the variation of zk on the granules’

membership function parameters. The current fuzzy cardinality can be kept or increased according to the incoming data
evaluation. By this formulation, one can compute the data sample contribution index, which is intimately linked with
the granules performance index as described in the sequel.

Granule’s performance index: This is computed by the sum of the data sample contribution index of an EEFIG:

i
k =

k∑
j=1


i
j(zj). (20)

The granularity allocation considering (20) is analyzed by the comparison between the performance index value at
the kth instant with the previous one, that is, if i

k > i
k−1, then, all the parameters of the information granule prototype

are updated. It is noteworthy the role of |i
k| in the update condition evaluation. Insofar as a data sample can change

the granule membership function parameterization, the fuzzy cardinality is held or updated (increased) depending on its
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2812 CORDOVIL JR et al.

variation. Based on it, the second level of admissibility (L2) is reached:

L2 ≡ i
k > i

k−1. (21)

Considering the evolving aspect and, if L1 in (16) and L2 in (21) are satisfied, the prototype parameters are recursively
updated according to the data stream processing and a justifiable granularity allocation procedure

𝜇i
k = 𝜇i

k−1 +
𝜔i

k(zk)∑N
i=1𝜔

i
k(zk)

(zk − 𝜇i
k), (22a)

𝜇
k,p

= max{𝜇k,p − sLk,p, 0}, (22b)

𝜇k,p = min{𝜇k,p + sRk,p,+∞}, (22c)

Σi−1

k = Π1i
k

[
Σi−1

k −
Σi

k
−1(zk+1 − 𝜇i

k)(zk+1 − 𝜇i
k)
⊤Σi−1

k

Π2i
k
+ (zk+1 − 𝜇i

k)
⊤Σi−1

k (zk+1 − 𝜇i
k)

]
, (22d)

where s ∈ [2, 4] as in Reference 39, and

Li
k,p =

Li
k−1,p ⋅ lk−1,p + 𝜇i

k − zk,p

lk,p
, Ri

k,p =
Ri

k−1,p ⋅ rk−1,p + zk,p − 𝜇i
k

rk,p
,

are the left-side mean and the right-side mean, respectively, with lk,p and rk,p, p ∈ N≤n+m being the cardinality of the
subsets z−k,p = {zk,p | zk,p < 𝜇k,p, ∀k ∈ N>0} and z+k,p = {zk,p | zk,p ≥ 𝜇k,p, ∀k ∈ N>0}, and dimension of (zk), respectively.
Complementary,

Π1i
k
=
𝜋2i

k

((
𝜋2i

k+1

)2
− 𝜋1i

k+1

)
𝜋2i

k+1

((
𝜋2i

k

)2
− 𝜋1i

k+1

) , Π2i
k
=

𝜋2i
k+1

((
𝜋2i

k

)2
− 𝜋1i

k

)
𝜋2i

k
𝜔i

k+1

(
𝜋2i

k+1
+ 𝜔i

k+1 − 2
) ,

and 𝜋i
1k
=

k∑
j=1

(
𝜔i

j(zj)
)2

, 𝜋i
2k
=

k∑
j=1
𝜔i

j(zj), as described in Reference 40.

3.2 EEFIG-ARX learning

For the online identification, it is employed an ARX model to obtain the parameters for (2). The foundation to be
noted here is related to how the parameters are computed and updated considering the aspects of the evolving granular
modeling.

Let 𝜓k = (Yk,Uk) ∈ Rn𝜏+m𝛿 be the regressors vector, where Yk = (yk−1,… , yk−𝜏) and Uk = (uk−1,… ,uk−𝛿). Regarding
the T-S rule base consequent structure, the autoregressive model identification is performed considering the ARX as
structure. This formulation is expressed for the ith EEFIG as


i,j
k

(
q−1, k

)
yk = 

i,j
k

(
q−1, k

)
uk, ∀j ∈ N≤n, (23)

where q−1 is the standard time shift operator, and 
i,j
k

(
q−1, k

)
, i,j

k

(
q−1, k

)
are the following polynomials:


i,j
k

(
q−1, k

)
= 1 − ai,j

k,1q−1 − · · · − ai,j
k,𝜏q−𝜏 , (24)


i,j
k

(
q−1, k

)
= bi,j

k,1q−1 + · · · + bi,j
k,𝛿q−𝛿, (25)

such that ai,j
k,i1

∈ R, i1 ∈ N≤𝜏 and bi,j
k,i2

∈ R, i2 ∈ N≤𝛿 are the output and input estimated parameters, respectively.
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CORDOVIL JR et al. 2813

3.3 Consequent update with recursive least squares
with variable-direction forgetting

When a new granule is created, it is needed to compute its parameters which are initialized considering a window Ψk =
[𝜓⊤

k ,… , 𝜓⊤

k−nw+1]
⊤ containing nw with samples before the creation instant. The parameter estimation is performed using

recursive least squares with variable-direction forgetting (RLS-VDF).34 This method is applied to avoid bursting of least
square parameters in absence of persistent excitation in data processing.

The RLS-VDF algorithm is described in Reference 34 and it can be applied to each consequent of the granule i
k by

using the following equations

S
i,j
k = Λi,j

k
−1

Si,j
k Λ

i,j
k
−1
, (26a)

Λi,j
k = Ui,j

k ΛkUi,j
k
⊤
, Λk =

[
𝜆k(k1, k2)

]
(n𝜏+m𝛿)×(n𝜏+m𝛿)

, 𝜆k(k1, k2) ≜
⎧⎪⎨⎪⎩
√
𝜆, if k1 = k2 and ‖‖colj(Ψk)‖‖ > 𝜐,

1, if k1 = k2 and ‖‖colj(Ψk)‖‖ ≤ 𝜐,

0, otherwise,

(26b)

Si,j
k+1 = S

i,j
k − S

i,j
k Ψk

(
I + Ψ⊤

k S
i,j
k Ψk

)−1
Ψ⊤

k S
i,j
k , (26c)

Ti,j
k+1 = Ti,j

k + Si,j
k+1Ψk

(
yk − Ψ⊤

k Ti,j
k

)
, (26d)

where Si,j
k , Λi,j

k , Ui,j
k , I ∈ R(n𝜏+m𝛿)×(n𝜏+m𝛿) are, respectively, the parameter covariance matrix, the data-dependent for-

getting factor matrix, orthonormal matrix which columns are the singular vectors of Si,j
k−1

−1
and, identity matrix.

𝜆 ∈ (0, 1] is the forgetting factor, 𝜐 ∈ R is a very small positive value, and Ti,j
k ∈ Rn𝜏+m𝛿 is the estimated param-

eters matrix. In the RLS-VDF algorithm, Λk is chosen to apply the forgetting factor 𝜆 only in the most rel-
evant information directions. Finally, in terms of the output and input estimated parameters, Ti,j

k is posed as
follows

Ti,j
k =

[
− ai,j

1,k · · · −ai,j
𝜏,k bi,j

1,k · · · bi,j
𝛿,k

]
, ∀j ∈ N≤n. (27)

However, the formulation (26a)–(26d) does not consider the normalized membership degrees of each granule
during the model update. In Reference 41, it is proposed the use of weighted recursive least squares (WRLS) for
updating evolving fuzzy models by considering the normalized membership degrees. In this article, the normalized
membership degree of each rule is assigned as the weight of the WRLS. In this article, the same approach is pro-
posed to improve the RLS-VDF for fuzzy models update. This new version of the estimator is denominated fuzzy
weighted least squares with variable-direction forgetting (FWRLS-VDF). In this method, granules’ parameters on the
rule consequent are weighted by the normalized membership degree gi

k. In this sense, (26c) and (26d) are rewritten
as follows

Si,j
k+1 = S

i,j
k − S

i,j
k Ψk

(
I + gi

kΨ
⊤

k S
i,j
k Ψk

)−1
Ψ⊤

k S
i,j
k , (28a)

Ti,j
k+1 = Ti,j

k + gi
kS

i,j
k+1Ψk

(
yk − Ψ⊤

k Ti,j
k

)
. (28b)

However, it is still necessary to revert the order of (28a) and (28b) to make the parameters update Ti,j
k+1 independent

of the covariance update Si,j
k+1. For this purpose, the following lemma is borrowed from Reference 34.

Lemma 1. Let X ∈ Rn×n be a positive semidefinite matrix, Z ∈ Rn×n be positive definite and Y ∈ Rn×m. Then,[
I − XY⊤

(
Z + YXY⊤

)−1Y
]

XY⊤ = XY⊤
(

Z + YXY⊤
)−1Z. (29)

Proof. The proof available in Reference 34. ▪
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2814 CORDOVIL JR et al.

Substituting (28a) in (28b), it follows that:

Ti,j
k+1 = Ti,j

k +
[

I − gi
kS

i,j
k Ψk

(
I + Ψ⊤

k gi
kS

i,j
k Ψk

)−1
Ψ⊤

k

] (
yk − Ψ⊤

k Ti,j
k

)
. (30)

Using Lemma 1, the following FWRLS-VDF equations are obtained:

Ti,j
k+1 = Ti,j

k + gi
kS

i,j
k Ψk

(
I + gi

kΨ
⊤

k S
i,j
k Ψk

)−1 (
yk − Ψ⊤

k Ti,j
k

)
, (31a)

Si,j
k+1 = S

i,j
k − S

i,j
k Ψk

(
I + Ψ⊤

k S
i,j
k Ψk

)−1
Ψ⊤

k S
i,j
k , (31b)

where S
i,j
k and Λi,j

k are defined in (26a) and (26b).

3.4 State-space representation of EEFIG-ARX

From (23)–(25), the following extended state-space T-S fuzzy model is obtained:

Rule i ∶ IF zk is i
k,

THEN xk+1 = Ai
kxk + Bi

kuk,

yk = Ci
kxk,

(32)

where xk = (yk,Y k, yk−𝜏+1, Ūk) ∈ Rnx , with nx = n𝜏 + m(𝛿 − 1), Y k = (yk−1,… , yk−𝜏+2), Ūk = (uk−1,… ,uk−𝛿+1), and

Ai
k =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ai
k,1 𝛼i

k ai
k,𝜏 𝛽 i

k

I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Bi

k =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

bi
k,1

0
0
I
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝛼i

k =
[

ai
k,2 · · · ai

k,𝜏−1

]
, 𝛽 i

k =
[

bi
k,2 · · · bi

k,𝛿

]
, Ci

k =
[

I 0 0 0
]
. (33)

Using the center-of-gravity defuzzification, the T-S fuzzy model can be represented in the following form:

xk+1 = Ak(zk)xk + Bk(zk)uk,

yk = Ck(zk)xk,
(34)

where [Ak(zk) Bk(zk) Ck(zk)] =
∑N

i=1gi
k(zk)

[
Ai

k Bi
k Ci

k

]
. Notice that the normalized membership functions satisfy, by

definition, the convexity property, that is:

N∑
i=1

gi
k(zk) = 1, 0 ≤ gi

k(zk) ≤ 1, ∀k ∈ N, i ∈ N≤N . (35)

Finally, considering the proposed learning triggering mechanism (5), the model used between two consecutive
learning activation (cf. (6)), is described as follows:

Rule i ∶ IF zk is ̃
i
k,

THEN xi
k+1 = Ãi

kxk + B̃i
kuk,

(36)
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CORDOVIL JR et al. 2815

where Ãi
k = Ai

nj
, B̃i

k = Bi
nj

, ̃ i
k =  i

nj
, ̃i

k = i
nj

, ∀k ∈
{

nj,… ,nj+1 − 1
}

. Then, the inferred fuzzy model is

xk+1 = Ãk(zk)xk + B̃k(zk)uk, (37)

where
[
Ãk(zk) B̃k(zk)

]
=

∑N
i=1g̃i

k(zk)
[

Ãi
k B̃i

k

]
and g̃i

k = gi
nj

, ∀k ∈
{

nj,… ,nj+1 − 1
}

which also meet the convexity property.
The algorithmic realization of the proposed EEFIG-ARX for the evolving T-S fuzzy modeling is summarized in

Algorithm 1.

Algorithm 1. EEFIG-ARX

Input: zk (sample from the data stream), Gk−1 (information granules)
Output: Gk, Ai

k,B
i
k, ∀i ∈ N≤N (estimated parameters).

1 for i ← 1 to N do
2 compute gi

k(zk) using (3) and (14);
3 if L1 = TRUE and L2 = TRUE then
4 update  i

k using (22a), (22b), (22c) and (22d);
5 end
6 if cs = TRUE then
7 create a new granule;
8 N ← N + 1; // updating the number of granules
9 compute Ψk for a window  ; // regressors matrix

10 compute SN
k , TN

k from (26c) and (26d); // initial parameters for the new EEFIG using

RLS-VDF
11 build AN

k and BN
k from TN

k using (27) and (33);
12 end
13 compute gi

k(zk) considering the update on the number of granules;
14 compute Ψk for a window  ;
15 compute Ti

k, Si
k using (31a)–(31b); // using WRLS-VDF

16 build Ai
k and Bi

k from Ti
k using (27) and (33);

17 end

4 ETC BASED ON EVOLVING FUZZY MODELS

In this section, all developments are performed for a fixed time step k ∈ {kj,… , kj+1 − 1}. Therefore, for simplicity, the
time sample is omitted here. The updating rule of the controller and the triggering parameters are discussed in detail in
Section 4.2. Consider the following evolving fuzzy control law:

uk = K(z̃k)x̃k =
N∑

j=1
g̃j(z̃k)Kjx̃k, ∀k ∈ {kj,… , kj+1 − 1}, (38)

where x̃k is defined in (8) and Kj
k ∈ Rm×nx , j ∈ N≤N are the local control gains. Based on the transmission error defined

in (11), the closed-loop system (37) with the control law (38) can be written as follows:

xk+1 =
(

Ã(zk) + B̃(zk)K(z̃k)
)

xk + B̃(zk)K(z̃k)ek. (39)

It is clear that there is a mismatching between the controller’s and plant’s premise variables induced by the event-based
sampling. This phenomenon is one of the sources of conservativeness in ETC design for T-S fuzzy models. To cope with
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2816 CORDOVIL JR et al.

this phenomenon, an appropriate triggering strategy is proposed as follows:

k0 = 0, kj+1 = min{k ∈ N ∶ k > kj ∧ Γ(xk, ek) ≤ 0}, ∀j ∈ N, (40)

with the following trigger function:

Γ(xk, ek) ∶= x⊤k Θxk − e⊤k Ξek − 𝜁(xk, ek), (41)

where

𝜁(xk, ek) ∶= 2𝜁⊤1 (xk, ek)P𝜁2(xk, ek) + 𝜁⊤2 (xk, ek)P𝜁2(xk, ek), (42)

𝜁1(xk, ek) ∶=
(

Ã(zk) + B(zk)K(zk)
)

xk + B̃(zk)K(zk)ek, (43)

𝜁2(xk, ek) ∶= B̃(zk) (K(z̃k) − K(zk)) (xk + ek), (44)

with P,Θ,Ξ ∈ Rnx×nx being symmetric positive definite matrices.

4.1 LMI-based ETC design

The design condition provided in this article is based on the following Lyapunov function candidate V ∶ Rnx → R≥0 for
the system (39) equipped with the ETM in (40):

V(xk) = x⊤k Pxk, (45)

where P ∈ Rnx×nx is a symmetric positive definite matrix. Based on the Lyapunov function candidate V(xk) in (45) and
the ETM with cancellation structure of asynchronous parameters in (41), an LMI-based co-design condition is stated as
follows.

Theorem 1. For a given xk ∈ Rnx , if there exist symmetric positive definite matrices Q̃, Θ̃, Ξ̃, Q̃0 ∈ Rnx×nx and matrices X̃ ∈
Rnx×nx and K̃j ∈ Rm×nx , j ∈ N≤r, such that the following optimization problem is feasible:

min
Q̃,X̃ ,Ξ̃,Ψ̃,Kj

tr(Ξ̃ + Ψ̃ + Q̃0), (46)

subject to

{
Υii < 0,
Υij + Υji < 0, i < j,

∀ i, j ∈ N≤N , (47)[
−Q̃ I

I −Q̃0

]
< 0, (48)[

1 x⊤k
xk Q̃

]
≥ 0, (49)

where

Υij =

⎡⎢⎢⎢⎢⎢⎣

−X̃ − X̃⊤ + Q̃ ⋆ ⋆ ⋆

0 −Ξ̃ ⋆ ⋆

ÃiX̃ + BiK̃j B̃iK̃j −Q̃ ⋆

X̃ 0 0 −Θ̃

⎤⎥⎥⎥⎥⎥⎦
,

then the origin of the closed-loop system (39) equipped with the ETM (40) is asymptotically stable with control gains Kj =
K̃jX̃−1, j ∈ N≤N , triggering matrices P = Q̃−1, Θ = Θ̃−1, Ξ = X̃−⊤Ξ̃X̃−1, and V(xk) in (45) is a Lyapunov function.
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CORDOVIL JR et al. 2817

Proof. Assume the optimization problem (46), subject to the constraints (47)–(49), is feasible. Since

Υ(zk) =
N∑

i=1

N∑
j=1

g̃i(zk)g̃j(zk)Υij =
N∑

i=1

(
g̃i(zk)

)2Υii +
N∑

i=1

N∑
j=i+1

g̃i(zk)g̃j(zk)
(
Υij + Υji) (50)

from convexity property of the normalized membership functions in (35), inequalities in (47) implies that

Υ(zk) =

⎡⎢⎢⎢⎢⎢⎣

−X̃ − X̃⊤ + Q̃ ⋆ ⋆ ⋆

0 −Ξ̃ ⋆ ⋆

Ã(zk)X̃ + B̃(zk)K̃(zk) B̃(zk)K̃(zk) −Q̃ ⋆

X̃ 0 0 −Θ̃

⎤⎥⎥⎥⎥⎥⎦
< 0. (51)

Then define Kj = K̃jX̃−1, j ∈ N≤N , and substitute K(zk) = K̃(zk)X̃
−1 into (51) to obtain

⎡⎢⎢⎢⎢⎢⎣

−X̃ − X̃⊤ + Q̃ ⋆ ⋆ ⋆

0 −Ξ̃ ⋆ ⋆

Ã(zk)X̃ + B̃(zk)K(zk)X̃ B̃(zk)K(zk)X̃ −Q̃ ⋆

X̃ 0 0 −Θ̃

⎤⎥⎥⎥⎥⎥⎦
< 0. (52)

Also, as X̃ + X̃⊤
> Q̃ > 0 then X̃ is nonsingular and −X̃⊤Q̃−1X̃ ≤ −X̃ − X̃⊤ + Q̃ , then it follows that

⎡⎢⎢⎢⎢⎢⎣

−X̃⊤Q̃−1X̃ ⋆ ⋆ ⋆

0 −Ξ̃ ⋆ ⋆

Ã(zk)X̃ + B̃(zk)K(zk)X̃ B̃(zk)K(zk)X̃ −Q̃ ⋆

X̃ 0 0 −Θ̃

⎤⎥⎥⎥⎥⎥⎦
< 0. (53)

By pre-multiplying inequality (53) by diag
(

X̃−⊤
, X̃−⊤

, Q̃−1
, I
)

and post-multiplying it by diag
(

X̃−1
, X̃−1

, Q̃−1
, I
)

, it
yields

⎡⎢⎢⎢⎢⎢⎣

−Q̃−1
⋆ ⋆ ⋆

0 −Ξ ⋆ ⋆

Q̃−1 (Ã(zk) + B̃(zk)K(zk)
)

Q̃−1B̃(zk)K(zk) −Q̃−1
⋆

I 0 0 −Θ̃

⎤⎥⎥⎥⎥⎥⎦
< 0, (54)

where Ξ = X̃−⊤Ξ̃X̃−1. Since Q̃ and Θ̃ are nonsingular matrices, define P = Q̃−1 and Θ = Θ̃−1 to rewrite (54) as

⎡⎢⎢⎢⎢⎢⎣

−P ⋆ ⋆ ⋆

0 −Ξ ⋆ ⋆

P
(

Ã(zk) + B̃(zk)K(zk)
)

PB̃(zk)K(zk) −P ⋆

I 0 0 −Θ−1

⎤⎥⎥⎥⎥⎥⎦
< 0. (55)

From Schur complement lemma, it implies[
−P + Θ + A⊤

cl(zk)PAcl(zk) ⋆

B⊤cl(zk)PAcl(zk) −Ξ + B⊤cl(zk)PBcl(zk)

]
< 0, (56)
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2818 CORDOVIL JR et al.

where Acl(zk) ∶= Ã(zk) + B̃(zk)K(zk), Bcl(zk) ∶= B̃(zk)K(zk). Now, pre-multiplying (56) by
[
x⊤k e⊤k

]
and post-multiplying it

by
[
x⊤k e⊤k

]⊤, results

(Acl(zk)xk + Bcl(zk)ek)⊤P (Acl(zk)xk + Bcl(zk)ek) − x⊤k Pxk + x⊤Θk xk − e⊤Ξk ek + 𝜁(xk, ek) − 𝜁(xk, ek) < 0, (57)

which ensures that

V(xk+1) − V(xk) + Γ(xk, ek) < 0, (58)

where Γ(xk, ek) is defined in (41) and V(xk) in (45). Since the triggering mechanism in (40) enforces that Γ(xk, ek) > 0, then
it follows from (58) that V(xk+1) − V(xk) < 0, ∀k ∈ {kj,… , kj+1 − 1}. Therefore, the origin of the closed-loop system (39)
under the ETM (40) is asymptotically stable. From Schur complement lemma, constraint (48) is equivalent to Q̃−1

< Q̃0.
Then the minimization of tr(Q̃0) tends to minimize the eigenvalues of Q̃−1 = P. From Schur complement lemma, con-
straint (49) implies x⊤k Pxk ≤ 1, which means that the unitary level set of V(xk) is maximized. As discussed in Reference 11,
the minimization of tr(Ξ̃ + Ψ̃) tends to induce larger inter-event times and, consequently, to reduce the number of events.
This concludes the proof. ▪

4.2 Overview of the learning-based ETC algorithm

Theorem 1 provides a sufficient condition for the stabilization of the T-S fuzzy model by means of an ETC law. How-
ever, when the controller gains and the ETM are designed through Theorem 1 for a given realization of the EEFIG
model (Ak (zk) ,Bk (zk)), the stability is not guaranteed if the next realization (Ak+1 (zk+1) ,Bk+1 (zk+1)) diverges from
the previous one. To tackle this issue, it is proposed an algorithm that redesigns the matrices K, Ξ, and Θ, when
the system parameters evolve. Indeed if the learning is not triggered at instant k + 1, the same K, Ξ, and Θ can be
used. In this sense, for the sake of consistency, those matrices will be denoted as time-varying in this section, namely
Kk, Ξk, and Θk.

The learning trigger mechanism described in (5) ensures that the model defined by Ãk and B̃k holds until the
next learning trigger event. During this time, the ETC solution is maintained, that is, Kk = Kk−1, Ξk = Ξk−1, and
Θk = Θk−1. When the learning trigger is activated, Ãk and B̃k are updated and the matrices Kk, Ξk, and Θk are com-
puted again by solving (46) with the matrix Q̃k−1 obtained in the last iteration. Since the solution of the optimization
problem (46)–(49) ensures, from Theorem 1, that V(xk+1) < V(xk) ≤ 1 with P = Q̃−1

k−1, the idea of using the same
matrix Q̃k−1 is to ensure that this inclusion condition is fulfilled at the next iteration. However, this may lead to a
more conservative solution and the feasibility is ensured in general for sufficiently smooth variations on the model
parameters.

When the fuzzy model is updated to describe the nonlinear system behavior and the learning trigger mechanism
transmits new model parameters to the event-triggered fuzzy controller design, the optimization problem solved with
the new model parameters may become infeasible. In this case, the optimization problem (46) is solved again with Q̃k
as the decision variable and a new Q̃k is obtained. Then the process is repeated in order to ensure the inclusion for the
new computed Lyapunov function. The learning-based ETC algorithm that is employed to update Q̃k, Kk, Ξk, and Θk is
summarized in Algorithm 2.

4.3 Initialization and issues of validity

4.3.1 Kickoff in the evolving granular model

The initialization of the proposed evolving modeling approach (EEFIG-ARX) relies on the existence of some input–output
data from the system. Those data are used to create the first granule, compute its prototype, and estimate its parameters by
using the RLS-VDF. The minimum number of samples necessary to initialize the EEFIG-ARX is nw + 1. It is not required
stable operation of the system when this data is acquired, that is, it can be obtained in open-loop even for an unstable
system. The Learning-based ETC algorithm (Algorithm 2) should be executed based on a granular base Gk that contains at
least one granule, but it may be initialized with more granules if there is enough input–output data. In all the experiments
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CORDOVIL JR et al. 2819

presented in this article, it is used only the minimum data sample to initialize the EEFIG-ARX, and therefore, there is a
single granule at the beginning of the simulations.

Algorithm 2. Learning-based ETC

Input: zk, Gk−1, Q̃k−1, Kk−1,Ξk−1,Θk−1, Ai
k−1,B

i
k−1, ∀i ∈ N≤N

Output: uk, Q̃k.
1 update Gk, Ak(zk), and Bk(zk) using Algorithm 1;
2 if ‖𝜖k‖ ≥ 𝜎‖yk‖ then
3 G̃k ← Gk, Ãk(zk) ← Ak(zk), and B̃k(zk) ← Bk(zk);
4 solve the problem (46)–(49) for a given Q̃k−1;
5 if (47)–(49) are INFEASIBLE for a given Q̃k−1 then
6 solve (46)–(49) with Q̃k as decision variable;
7 if (46)–(49) are INFEASIBLE with Q̃k as decision variable then
8 Q̃k ← Q̃k−1, Kj

k ← Kj
k−1, Ξk ← Ξk−1, and Θk ← Θk−1;

9 else
10 Kj

k ← K̃jX̃−1, Ξk ← X̃−⊤Ξ̃X̃−1, and Θk ← Θ̃−1;
11 end
12 else
13 Q̃k ← Q̃k−1, Kj

k ← K̃jX̃−1, Ξk ← X̃−⊤Ξ̃X̃−1, and Θk ← Θ̃−1;
14 end
15 else
16 Q̃k ← Q̃k−1, Kj

k ← Kj
k−1, Ξk ← Ξk−1, and Θk ← Θk−1;

17 end
18 compute Γ(xk, ek) using (41)–(44);
19 compute ũ = Kk (zk) xk;
20 if Γ(xk, ek) ≤ 0 then
21 uk ← ũ;
22 else
23 uk ← uk−1;
24 end

4.3.2 Recursive feasibility and robustness

The problem of recursive feasibility is not totally addressed here, although condition (49) helps to maintain the system
trajectories within the origin’s domain of attraction. In general, it is enough to provide stabilization and recursive fea-
sibility of the algorithm. However, there are situations that may lead to instability or infeasibility: (i) when the model
updates too fast, it is possible that new granules with inaccurate initial parameters are created making the optimization
problem infeasible or producing controllers based on immature models; (ii) disturbances may instantaneously lead the
trajectories to a region of the state space that is too far from the already covered region and, therefore, out of the domain
of attraction ensured by the current controller. Both situations may be avoided by using initialization data with enough
spectral distribution. In addition, the parameters nw and 𝜂 may be also increased to make the model more resistant to
novel information.

5 SIMULATION EXAMPLES

The effectiveness of the proposed EEFIG-ARX learning and the evolving ETC is illustrated by two examples: the van der
Pol oscillator and the magnetic levitation system. The parameters of the controller and ETM are computed by solving the
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2820 CORDOVIL JR et al.

optimization problem (46) subject to the LMI constraints (47)–(49) using the Yalmip parser and MOSEK solver in the
MATLAB environment.

5.1 van der Pol oscillator

Consider the discrete van der Pol oscillator equations:42

[
y1,k+1

y2,k+1

]
=

[
y1,k + hy2,k

−hy1,k + y2,k + 𝜌kh(0.5 − y2
1,k)y2,k

]
+

[
0
h

]
uk, (59)

with parameters 𝜌k and h = 0.01 s. The time-varying parameter 𝜌k is described as follows:

𝜌k =

⎧⎪⎪⎨⎪⎪⎩

1, 0 ≤ k ≤ 500,
2, 500 < k ≤ 1000,
3, 1000 < k ≤ 1500,
1 + 1.1 cos(0.1hk), k > 1500.

(60)

This nonlinear time-varying model is only considered to generate the data stream.
Based only on the generated data stream, and without any prior knowledge about system dynamics, the evolving fuzzy

model and the event-triggered fuzzy controller are updated according to Algorithm 1. Two distinct experiments are per-
formed to evaluate the effect of the forgetting factor and the window width on the granulation process and, consequently,
in the control per se. Each experiment has been conducted considering the following parameters:

• Experiment 1: 𝜂 = 0.99, 𝜎 = 0.001, nw = 5.
• Experiment 2: 𝜂 = 0.975, 𝜎 = 0.001, nw = 20.

In all experiments, the selected model structure presents the same parameters 𝜏 = 1 and 𝛿 = 2, that is, the state vector
is given by xk = (yk,uk−1). Furthermore, the same threshold 𝜎 is considered for the learning trigger rule.

The difference between them is in the selected forgetting factor 𝜂 and the window width nw. The forgetting factor 𝜂
is related to the weight given to more recent data, while nw is related to the model granulation, such that larger values
of nw produce less variations in the evolving model. In addition, for the initialization of both experiments it has been
considered a random sequence input data with nw + 1 and the system’s response when applying the input data. The same
sequence has been used in both experiments. However, it has been used only the minimum amount of data for initializing
the algorithm, that is, nw + 1, and the initial output values y0 are assumed to be the last output of the initialization data.
For this reason, the initial outputs of experiments are different: in Experiment 1, it is y0 = [−0.8352 0.4332]⊤; and in
Experiment 2, it is y0 = [−0.0087 0.1332]⊤.

The results of Experiment 1 are depicted in Figure 2. The data measured from the plant are shown in Figure 2A,
the control signal generated under Algorithm 2 is depicted in Figure 2C, the transmission instants of the learning
trigger and the learning ETC are depicted in Figure 2B and the prediction error is depicted in Figure 2D. In this
case, three granules have been created during the execution and the instants at which new granules and, conse-
quently, new fuzzy rules have been created are illustrated as dotted vertical lines. It can be noticed that the creation
of new fuzzy rules coincides with the instants at which the prediction error increases, indicating that new granules
are created when the current existing knowledge-base is not able to properly describe the system’s behavior. It can
also be noticed that the learning trigger avoids updating the controller structure at every time instants, the updat-
ing occurs only when the trigger rule is violated. Thus, the instants at which the controller structure is updated are
illustrated in Figure 2B when the learning trigger signal is 1. From Figures 2A,B, it can be noticed that the control
signal is updated only when new events of the ETM are transmitted, which implies saving network communication
resources.

The results of Experiment 2 are depicted in Figure 3. The data measured from the plant are shown in
Figure 3A, the control signal is depicted in Figure 3C, the transmission instants of the learning trigger and the
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CORDOVIL JR et al. 2821

(A) (B)

(C) (D)

F I G U R E 2 Simulation results of Experiment 1 for the van der Pol oscillator system

(A) (B)

(C) (D)

F I G U R E 3 Simulation results of Experiment 2 for the van der Pol oscillator system

ETC are depicted in Figure 3B as well as the prediction error is depicted in Figure 3D. In this case, five gran-
ules have been created and, similarly to Experiment 1, the creation of new fuzzy rules coincides with the vari-
ations of the prediction error. In contrast to the first experiment, the smaller forgetting factor 𝜂 prioritizes the
use of recent data for the construction of the data-driven fuzzy model, which is related to the higher num-
ber of created granules. It is also evident the effect of the learning trigger in reducing the controller structure
updating as well as the learning ETC scheme in reducing the amount of data transmitted through the network
communication.
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2822 CORDOVIL JR et al.

5.2 Magnetic levitation

Consider the magnetic levitation system43 depicted in Figure 4 and described by the following nonlinear dynamical
equations:

[
y1,k+1

y2,k+1

]
=

⎡⎢⎢⎣
y1,k + hy2,k

f1(yk)y1,k +
(

1 − hKm
m

)
x2,k + f2(yk) (uk + dk)

⎤⎥⎥⎦ , (61)

where x1,k is the ball’s height around the reference system at yo = 0.05 m, x2,k is the ball’s vertical velocity,

f1(yk) =
hg𝜇

(
𝜇y1,k + 2𝜇yo + 2

)
y1,k(

1 + 𝜇
(

y1,k + yo
))2 , f2(yk) =

hLk𝜇

2m
(
1 + 𝜇

(
y1,k + yo

))2 , (62)

and the parameters are: the ball’s mass m = 0.068 kg, gravitational acceleration g = 9.8 m/s2, viscous friction coefficient
Km = 0.001 N (m∕s)−1, coefficient of inductance variation 𝜇 = 2 m−1, and sampling period h = 0.01 s. The time-varying
inductance is

Lk =

⎧⎪⎪⎨⎪⎪⎩

0.46, 0 ≤ k ≤ 150,
0.368, 150 ≤ k ≤ 750,
0.575, 750 < k ≤ 1400,
0.46 + 0.23 sin(0.05hk), k > 1400,

(63)

and the actuator disturbance dk is

dk =

{
0, 0 ≤ k ≤ 750,
−0.015, k > 750.

(64)

It is worth to mention that (61) presents an open-loop unstable equilibrium point in the origin, and fast dynamics,
which makes the stabilization based on data-driven models a challenging task. Three experiments have been performed
using the structure with 𝜏 = 2 and 𝛿 = 2, as the maximum lags of output and input, respectively. The parameters used in
each experiment are listed as follows:

F I G U R E 4 Diagram of the magnetic suspension system
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CORDOVIL JR et al. 2823

• Experiment 1: 𝜂 = 0.99, 𝜎 = 0.001, nw = 30.
• Experiment 2: 𝜂 = 0.997, 𝜎 = 0.001, nw = 25.
• Experiment 3: 𝜂 = 0.997, 𝜎 = 0.00001, nw = 25.

The results of Experiments 1–3 are depicted, respectively, in Figures 5–7. As in the van der Pol experiment,
for the initialization of the three experiments it has been considered a random sequence input data with nw + 1

(A) (B)

(C) (D)

F I G U R E 5 Simulation results of Experiment 1 for the magnetic levitation system

(A) (B)

(C) (D)

F I G U R E 6 Simulation results of Experiment 2 for the magnetic levitation system
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2824 CORDOVIL JR et al.

(A) (B)

(C) (D)

F I G U R E 7 Simulation results of Experiment 3 for the magnetic levitation system

and the system’s response when applying the input data. The same sequence has been used in all the experi-
ments. However, it has been only used the minimum amount of data for initializing the algorithm, that is, nw + 1,
and the initial output values y0 are assumed to be the last output of the initialization data. For this reason,
the initial outputs of Experiment 1 is y0 = [−0.0087 0.1332]⊤, and the initial outputs of Experiments 2 and 3 are
y0 = [−0.0154 0.1331]⊤.

The results in all experiments indicated that the proposed learning ETC algorithm is able to stabilize the magnetic lev-
itation system even under variation of the inductance and presence of disturbances. However, it is clear that the unstable
dynamics required more effort from the control and the model learning algorithm to ensure the stability. Furthermore,
since the system was very close to the origin in k = 0 and the stabilization is reached rapidly, the model was not able to
learn the dynamics outside of the neighborhood of the origin. For this reason, in absence of disturbances, a linear model
was enough to stabilize the system. In addition, after the injection of the disturbance and the variation of the inductance
value, it was necessary to create new granules to better represent the dynamics.

In Experiment 1, the injection of the additive actuator disturbance dk at k = 750 increases prediction error and,
consequently, the system’s output and the control input increase as well. As the system evolves, a new granule
has been created and the effects of the disturbance have been attenuated owe to the granule maturation. The sys-
tem’s trajectories and the prediction error increased again after the k = 1400 due to the sinusoidal behavior of the
inductance. The system reached the equilibrium again after some samples due to the learning ability of the model,
but new disturbances due to sinusoidal parameter variation appear periodically. However, it is clear that the sys-
tem with time-varying dynamics and disturbances required more learning and control events to ensure the system
stability.

In Experiment 2, a similar behavior was observed and the number of events was increased after k = 750. However,
with a higher forgetting factor 𝜂 = 0.997, it was less sensitive to the first disturbance injection at k = 750, although
the injection of the sinusoidal inductance variation at k = 1400 increased the prediction error and displaced the ball,
leading to the creation of a new granule to describe the dynamics far away from the equilibrium point. The system tra-
jectories and the prediction error are disturbed again at k = 1800 when the sinusoidal inductance is approaching to its
peak, which increases the prediction error. The stabilization was ensured again after the creation of a third granule.
The comparison between Experiments 2 and 3 allows to understand the effect of the learning threshold 𝜎. In Experi-
ment 3, the use of a lower learning threshold 𝜎 increases the number learning events. In this case, the model learning
have been active during the whole simulation time. As a consequence, the system’s states were less affected by the dis-
turbances, less control events were necessary, and only two granules were used to represent the system’s dynamics.
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CORDOVIL JR et al. 2825

However, the computational cost of designing the control parameters at each learning event is greater than in the other
experiments.

6 CONCLUSION

This article presented a novel learning-based ETC strategy that relies on the data-driven evolving fuzzy model-
ing EEFIG-ARX. The proposed learning-based control approach addresses the networked control of nonlinear and
time-varying systems with unknown dynamics. The EEFIG-ARX is based on the principle of justifiable granularity
and uses a parameter estimation algorithm (FWRLS-VD) that eases the use of this kind of model for online learn-
ing control strategies, since it is able to deal with the loss of persistence of excitation. The ETC gains and the ETM
parameters are designed through a convex optimization procedure based on LMI constraints which reduces the con-
sumption of communication resources. That optimization problem is solved every time the model is updated. In order
to save computational efforts, the model learning is controlled by means of an event-triggering learning mechanism
that avoids control redesigns while the model accuracy is admissible. Numerical simulations of nonlinear systems with
time-varying dynamics and disturbances are used to illustrate the effectiveness of the proposed learning-based ETC
strategy.

Although the proposed approach seems to be effective to control even unstable and time-varying nonlinear systems,
there are still issues regarding the recursive feasibility that should be investigated in future works. In addition, further
investigations should also include mechanisms to ensure the control input boundness in order to avoid instability due to
the model adaptation.
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